Source code for pgmpy.models.BayesianModel

#!/usr/bin/env python3

import itertools
from collections import defaultdict
import logging
from operator import mul

import networkx as nx
import numpy as np
import pandas as pd

from pgmpy.base import DirectedGraph
from pgmpy.factors.discrete import TabularCPD, JointProbabilityDistribution, DiscreteFactor
from pgmpy.factors.continuous import ContinuousFactor
from pgmpy.independencies import Independencies
from pgmpy.extern import six
from pgmpy.extern.six.moves import range, reduce
from pgmpy.models.MarkovModel import MarkovModel


[docs]class BayesianModel(DirectedGraph): """ Base class for bayesian model. A models stores nodes and edges with conditional probability distribution (cpd) and other attributes. models hold directed edges. Self loops are not allowed neither multiple (parallel) edges. Nodes can be any hashable python object. Edges are represented as links between nodes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. Examples -------- Create an empty bayesian model with no nodes and no edges. >>> from pgmpy.models import BayesianModel >>> G = BayesianModel() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node('a') Add the nodes from any container (a list, set or tuple or the nodes from another graph). >>> G.add_nodes_from(['a', 'b']) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge('a', 'b') a list of edges, >>> G.add_edges_from([('a', 'b'), ('b', 'c')]) If some edges connect nodes not yet in the model, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Shortcuts:** Many common graph features allow python syntax for speed reporting. >>> 'a' in G # check if node in graph True >>> len(G) # number of nodes in graph 3 """ def __init__(self, ebunch=None): super(BayesianModel, self).__init__() if ebunch: self.add_edges_from(ebunch) self.cpds = [] self.cardinalities = defaultdict(int)
[docs] def add_edge(self, u, v, **kwargs): """ Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph Parameters ---------- u,v : nodes Nodes can be any hashable python object. Examples -------- >>> from pgmpy.models import BayesianModel/home/abinash/software_packages/numpy-1.7.1 >>> G = BayesianModel() >>> G.add_nodes_from(['grade', 'intel']) >>> G.add_edge('grade', 'intel') """ if u == v: raise ValueError('Self loops are not allowed.') if u in self.nodes() and v in self.nodes() and nx.has_path(self, v, u): raise ValueError( 'Loops are not allowed. Adding the edge from (%s->%s) forms a loop.' % (u, v)) else: super(BayesianModel, self).add_edge(u, v, **kwargs)
[docs] def remove_node(self, node): """ Remove node from the model. Removing a node also removes all the associated edges, removes the CPD of the node and marginalizes the CPDs of it's children. Parameters ---------- node : node Node which is to be removed from the model. Returns ------- None Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.models import BayesianModel >>> model = BayesianModel([('A', 'B'), ('B', 'C'), ... ('A', 'D'), ('D', 'C')]) >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)), ... columns=['A', 'B', 'C', 'D']) >>> model.fit(values) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7f28248e2438>, <TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>] >>> model.remove_node('A') >>> model.get_cpds() [<TabularCPD representing P(B:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2) at 0x7f28248e26a0>] """ affected_nodes = [v for u, v in self.edges() if u == node] for affected_node in affected_nodes: node_cpd = self.get_cpds(node=affected_node) if node_cpd: node_cpd.marginalize([node], inplace=True) if self.get_cpds(node=node): self.remove_cpds(node) super(BayesianModel, self).remove_node(node)
[docs] def remove_nodes_from(self, nodes): """ Remove multiple nodes from the model. Removing a node also removes all the associated edges, removes the CPD of the node and marginalizes the CPDs of it's children. Parameters ---------- nodes : list, set (iterable) Nodes which are to be removed from the model. Returns ------- None Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.models import BayesianModel >>> model = BayesianModel([('A', 'B'), ('B', 'C'), ... ('A', 'D'), ('D', 'C')]) >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)), ... columns=['A', 'B', 'C', 'D']) >>> model.fit(values) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7f28248e2438>, <TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>] >>> model.remove_nodes_from(['A', 'B']) >>> model.get_cpds() [<TabularCPD representing P(C:2 | D:2) at 0x7f28248e2a58>, <TabularCPD representing P(D:2) at 0x7f28248e26d8>] """ for node in nodes: self.remove_node(node)
[docs] def add_cpds(self, *cpds): """ Add CPD (Conditional Probability Distribution) to the Bayesian Model. Parameters ---------- cpds : list, set, tuple (array-like) List of CPDs which will be associated with the model EXAMPLE ------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete.CPD import TabularCPD >>> student = BayesianModel([('diff', 'grades'), ('intel', 'grades')]) >>> grades_cpd = TabularCPD('grades', 3, [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], evidence_card=[2, 3]) >>> student.add_cpds(grades_cpd) +------+-----------------------+---------------------+ |diff: | easy | hard | +------+------+------+---------+------+------+-------+ |intel:| dumb | avg | smart | dumb | avg | smart | +------+------+------+---------+------+------+-------+ |gradeA| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +------+------+------+---------+------+------+-------+ |gradeB| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +------+------+------+---------+------+------+-------+ |gradeC| 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | +------+------+------+---------+------+------+-------+ """ for cpd in cpds: if not isinstance(cpd, (TabularCPD, ContinuousFactor)): raise ValueError('Only TabularCPD or ContinuousFactor can be added.') if set(cpd.scope()) - set(cpd.scope()).intersection( set(self.nodes())): raise ValueError('CPD defined on variable not in the model', cpd) for prev_cpd_index in range(len(self.cpds)): if self.cpds[prev_cpd_index].variable == cpd.variable: logging.warning("Replacing existing CPD for {var}".format(var=cpd.variable)) self.cpds[prev_cpd_index] = cpd break else: self.cpds.append(cpd)
[docs] def get_cpds(self, node=None): """ Returns the cpd of the node. If node is not specified returns all the CPDs that have been added till now to the graph Parameter --------- node: any hashable python object (optional) The node whose CPD we want. If node not specified returns all the CPDs added to the model. Returns ------- A list of TabularCPDs. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd) >>> student.get_cpds() """ if node: if node not in self.nodes(): raise ValueError('Node not present in the Directed Graph') for cpd in self.cpds: if cpd.variable == node: return cpd else: return None else: return self.cpds
[docs] def remove_cpds(self, *cpds): """ Removes the cpds that are provided in the argument. Parameters ---------- *cpds: TabularCPD object A CPD object on any subset of the variables of the model which is to be associated with the model. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd) >>> student.remove_cpds(cpd) """ for cpd in cpds: if isinstance(cpd, six.string_types): cpd = self.get_cpds(cpd) self.cpds.remove(cpd)
[docs] def get_cardinality(self, node=None): """ Returns the cardinality of the node. Throws an error if the CPD for the queried node hasn't been added to the network. Parameters ---------- node: Any hashable python object(optional). The node whose cardinality we want. If node is not specified returns a dictionary with the given variable as keys and their respective cardinality as values. Returns ------- int or dict : If node is specified returns the cardinality of the node. If node is not specified returns a dictionary with the given variable as keys and their respective cardinality as values. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd_diff = TabularCPD('diff',2,[[0.6,0.4]]); >>> cpd_intel = TabularCPD('intel',2,[[0.7,0.3]]); >>> cpd_grade = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd_diff,cpd_intel,cpd_grade) >>> student.get_cardinality() defaultdict(int, {'diff': 2, 'grade': 2, 'intel': 2}) >>> student.get_cardinality('intel') 2 """ if node: return self.get_cpds(node).cardinality[0] else: cardinalities = defaultdict(int) for cpd in self.cpds: cardinalities[cpd.variable] = cpd.cardinality[0] return cardinalities
[docs] def check_model(self): """ Check the model for various errors. This method checks for the following errors. * Checks if the sum of the probabilities for each state is equal to 1 (tol=0.01). * Checks if the CPDs associated with nodes are consistent with their parents. Returns ------- check: boolean True if all the checks are passed """ for node in self.nodes(): cpd = self.get_cpds(node=node) if cpd is None: raise ValueError('No CPD associated with {}'.format(node)) elif isinstance(cpd, (TabularCPD, ContinuousFactor)): evidence = cpd.get_evidence() parents = self.get_parents(node) if set(evidence if evidence else []) != set(parents if parents else []): raise ValueError("CPD associated with %s doesn't have " "proper parents associated with it." % node) if not cpd.is_valid_cpd(): raise ValueError('Sum or integral of conditional probabilites for node %s' ' is not equal to 1.' % node) return True
def _get_ancestors_of(self, obs_nodes_list): """ Returns a dictionary of all ancestors of all the observed nodes including the node itself. Parameters ---------- obs_nodes_list: string, list-type name of all the observed nodes Examples -------- >>> from pgmpy.models import BayesianModel >>> model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'), ... ('I', 'L')]) >>> model._get_ancestors_of('G') {'D', 'G', 'I'} >>> model._get_ancestors_of(['G', 'I']) {'D', 'G', 'I'} """ if not isinstance(obs_nodes_list, (list, tuple)): obs_nodes_list = [obs_nodes_list] for node in obs_nodes_list: if node not in self.nodes(): raise ValueError('Node {s} not in not in graph'.format(s=node)) ancestors_list = set() nodes_list = set(obs_nodes_list) while nodes_list: node = nodes_list.pop() if node not in ancestors_list: nodes_list.update(self.predecessors(node)) ancestors_list.add(node) return ancestors_list
[docs] def active_trail_nodes(self, variables, observed=None): """ Returns a dictionary with the given variables as keys and all the nodes reachable from that respective variable as values. Parameters ---------- variables: str or array like variables whose active trails are to be found. observed : List of nodes (optional) If given the active trails would be computed assuming these nodes to be observed. Examples -------- >>> from pgmpy.models import BayesianModel >>> student = BayesianModel() >>> student.add_nodes_from(['diff', 'intel', 'grades']) >>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades')]) >>> student.active_trail_nodes('diff') {'diff': {'diff', 'grades'}} >>> student.active_trail_nodes(['diff', 'intel'], observed='grades') {'diff': {'diff', 'intel'}, 'intel': {'diff', 'intel'}} References ---------- Details of the algorithm can be found in 'Probabilistic Graphical Model Principles and Techniques' - Koller and Friedman Page 75 Algorithm 3.1 """ if observed: observed_list = observed if isinstance(observed, (list, tuple)) else [observed] else: observed_list = [] ancestors_list = self._get_ancestors_of(observed_list) # Direction of flow of information # up -> from parent to child # down -> from child to parent active_trails = {} for start in variables if isinstance(variables, (list, tuple)) else [variables]: visit_list = set() visit_list.add((start, 'up')) traversed_list = set() active_nodes = set() while visit_list: node, direction = visit_list.pop() if (node, direction) not in traversed_list: if node not in observed_list: active_nodes.add(node) traversed_list.add((node, direction)) if direction == 'up' and node not in observed_list: for parent in self.predecessors(node): visit_list.add((parent, 'up')) for child in self.successors(node): visit_list.add((child, 'down')) elif direction == 'down': if node not in observed_list: for child in self.successors(node): visit_list.add((child, 'down')) if node in ancestors_list: for parent in self.predecessors(node): visit_list.add((parent, 'up')) active_trails[start] = active_nodes return active_trails
[docs] def local_independencies(self, variables): """ Returns an instance of Independencies containing the local independencies of each of the variables. Parameters ---------- variables: str or array like variables whose local independencies are to be found. Examples -------- >>> from pgmpy.models import BayesianModel >>> student = BayesianModel() >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'), >>> ('grade', 'letter'), ('intel', 'SAT')]) >>> ind = student.local_independencies('grade') >>> ind (grade _|_ SAT | diff, intel) """ def dfs(node): """ Returns the descendents of node. Since Bayesian Networks are acyclic, this is a very simple dfs which does not remember which nodes it has visited. """ descendents = [] visit = [node] while visit: n = visit.pop() neighbors = self.neighbors(n) visit.extend(neighbors) descendents.extend(neighbors) return descendents independencies = Independencies() for variable in variables if isinstance(variables, (list, tuple)) else [variables]: non_descendents = set(self.nodes()) - {variable} - set(dfs(variable)) parents = set(self.get_parents(variable)) if non_descendents - parents: independencies.add_assertions([variable, non_descendents - parents, parents]) return independencies
[docs] def is_active_trail(self, start, end, observed=None): """ Returns True if there is any active trail between start and end node Parameters ---------- start : Graph Node end : Graph Node observed : List of nodes (optional) If given the active trail would be computed assuming these nodes to be observed. additional_observed : List of nodes (optional) If given the active trail would be computed assuming these nodes to be observed along with the nodes marked as observed in the model. Examples -------- >>> from pgmpy.models import BayesianModel >>> student = BayesianModel() >>> student.add_nodes_from(['diff', 'intel', 'grades', 'letter', 'sat']) >>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades'), ('grades', 'letter'), ... ('intel', 'sat')]) >>> student.is_active_trail('diff', 'intel') False >>> student.is_active_trail('grades', 'sat') True """ if end in self.active_trail_nodes(start, observed)[start]: return True else: return False
[docs] def get_independencies(self, latex=False): """ Computes independencies in the Bayesian Network, by checking d-seperation. Parameters ---------- latex: boolean If latex=True then latex string of the independence assertion would be created. Examples -------- >>> from pgmpy.models import BayesianModel >>> chain = BayesianModel([('X', 'Y'), ('Y', 'Z')]) >>> chain.get_independencies() (X _|_ Z | Y) (Z _|_ X | Y) """ independencies = Independencies() for start in (self.nodes()): rest = set(self.nodes()) - {start} for r in range(len(rest)): for observed in itertools.combinations(rest, r): d_seperated_variables = rest - set(observed) - set( self.active_trail_nodes(start, observed=observed)[start]) if d_seperated_variables: independencies.add_assertions([start, d_seperated_variables, observed]) independencies.reduce() if not latex: return independencies else: return independencies.latex_string()
[docs] def to_markov_model(self): """ Converts bayesian model to markov model. The markov model created would be the moral graph of the bayesian model. Examples -------- >>> from pgmpy.models import BayesianModel >>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> mm = G.to_markov_model() >>> mm.nodes() ['diff', 'grade', 'intel', 'SAT', 'letter'] >>> mm.edges() [('diff', 'intel'), ('diff', 'grade'), ('intel', 'grade'), ('intel', 'SAT'), ('grade', 'letter')] """ moral_graph = self.moralize() mm = MarkovModel(moral_graph.edges()) mm.add_factors(*[cpd.to_factor() for cpd in self.cpds]) return mm
[docs] def to_junction_tree(self): """ Creates a junction tree (or clique tree) for a given bayesian model. For converting a Bayesian Model into a Clique tree, first it is converted into a Markov one. For a given markov model (H) a junction tree (G) is a graph 1. where each node in G corresponds to a maximal clique in H 2. each sepset in G separates the variables strictly on one side of the edge to other. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> sat_cpd = TabularCPD('SAT', 2, ... [[0.1, 0.2, 0.7], ... [0.9, 0.8, 0.3]], ... evidence=['intel'], evidence_card=[3]) >>> letter_cpd = TabularCPD('letter', 2, ... [[0.1, 0.4, 0.8], ... [0.9, 0.6, 0.2]], ... evidence=['grade'], evidence_card=[3]) >>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd, sat_cpd, letter_cpd) >>> jt = G.to_junction_tree() """ mm = self.to_markov_model() return mm.to_junction_tree()
[docs] def fit(self, data, estimator=None, state_names=[], complete_samples_only=True, **kwargs): """ Estimates the CPD for each variable based on a given data set. Parameters ---------- data: pandas DataFrame object DataFrame object with column names identical to the variable names of the network. (If some values in the data are missing the data cells should be set to `numpy.NaN`. Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.) estimator: Estimator class One of: - MaximumLikelihoodEstimator (default) - BayesianEstimator: In this case, pass 'prior_type' and either 'pseudo_counts' or 'equivalent_sample_size' as additional keyword arguments. See `BayesianEstimator.get_parameters()` for usage. state_names: dict (optional) A dict indicating, for each variable, the discrete set of states that the variable can take. If unspecified, the observed values in the data set are taken to be the only possible states. complete_samples_only: bool (default `True`) Specifies how to deal with missing data, if present. If set to `True` all rows that contain `np.Nan` somewhere are ignored. If `False` then, for each variable, every row where neither the variable nor its parents are `np.NaN` is used. Examples -------- >>> import pandas as pd >>> from pgmpy.models import BayesianModel >>> from pgmpy.estimators import MaximumLikelihoodEstimator >>> data = pd.DataFrame(data={'A': [0, 0, 1], 'B': [0, 1, 0], 'C': [1, 1, 0]}) >>> model = BayesianModel([('A', 'C'), ('B', 'C')]) >>> model.fit(data) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7fb98a7d50f0>, <TabularCPD representing P(B:2) at 0x7fb98a7d5588>, <TabularCPD representing P(C:2 | A:2, B:2) at 0x7fb98a7b1f98>] """ from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator, BaseEstimator if estimator is None: estimator = MaximumLikelihoodEstimator else: if not issubclass(estimator, BaseEstimator): raise TypeError("Estimator object should be a valid pgmpy estimator.") _estimator = estimator(self, data, state_names=state_names, complete_samples_only=complete_samples_only) cpds_list = _estimator.get_parameters(**kwargs) self.add_cpds(*cpds_list)
[docs] def predict(self, data): """ Predicts states of all the missing variables. Parameters ---------- data : pandas DataFrame object A DataFrame object with column names same as the variables in the model. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from pgmpy.models import BayesianModel >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> train_data = values[:800] >>> predict_data = values[800:] >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> predict_data = predict_data.copy() >>> predict_data.drop('E', axis=1, inplace=True) >>> y_pred = model.predict(predict_data) >>> y_pred E 800 0 801 1 802 1 803 1 804 0 ... ... 993 0 994 0 995 1 996 1 997 0 998 0 999 0 """ from pgmpy.inference import VariableElimination if set(data.columns) == set(self.nodes()): raise ValueError("No variable missing in data. Nothing to predict") elif set(data.columns) - set(self.nodes()): raise ValueError("Data has variables which are not in the model") missing_variables = set(self.nodes()) - set(data.columns) pred_values = defaultdict(list) # Send state_names dict from one of the estimated CPDs to the inference class. model_inference = VariableElimination(self, state_names=self.get_cpds()[0].state_names) for index, data_point in data.iterrows(): states_dict = model_inference.map_query(variables=missing_variables, evidence=data_point.to_dict()) for k, v in states_dict.items(): pred_values[k].append(v) return pd.DataFrame(pred_values, index=data.index)
[docs] def predict_probability(self, data): """ Predicts probabilities of all states of the missing variables. Parameters ---------- data : pandas DataFrame object A DataFrame object with column names same as the variables in the model. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from pgmpy.models import BayesianModel >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(100, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> train_data = values[:80] >>> predict_data = values[80:] >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> predict_data = predict_data.copy() >>> predict_data.drop('B', axis=1, inplace=True) >>> y_prob = model.predict_probability(predict_data) >>> y_prob B_0 B_1 80 0.439178 0.560822 81 0.581970 0.418030 82 0.488275 0.511725 83 0.581970 0.418030 84 0.510794 0.489206 85 0.439178 0.560822 86 0.439178 0.560822 87 0.417124 0.582876 88 0.407978 0.592022 89 0.429905 0.570095 90 0.581970 0.418030 91 0.407978 0.592022 92 0.429905 0.570095 93 0.429905 0.570095 94 0.439178 0.560822 95 0.407978 0.592022 96 0.559904 0.440096 97 0.417124 0.582876 98 0.488275 0.511725 99 0.407978 0.592022 """ from pgmpy.inference import VariableElimination if set(data.columns) == set(self.nodes()): raise ValueError("No variable missing in data. Nothing to predict") elif set(data.columns) - set(self.nodes()): raise ValueError("Data has variables which are not in the model") missing_variables = set(self.nodes()) - set(data.columns) pred_values = defaultdict(list) model_inference = VariableElimination(self) for index, data_point in data.iterrows(): states_dict = model_inference.query(variables=missing_variables, evidence=data_point.to_dict()) for k, v in states_dict.items(): for l in range(len(v.values)): state = self.get_cpds(k).state_names[k][l] pred_values[k + '_' + str(state)].append(v.values[l]) return pd.DataFrame(pred_values, index=data.index)
[docs] def get_factorized_product(self, latex=False): # TODO: refer to IMap class for explanation why this is not implemented. pass
[docs] def get_immoralities(self): """ Finds all the immoralities in the model A v-structure X -> Z <- Y is an immorality if there is no direct edge between X and Y . Returns ------- set: A set of all the immoralities in the model Examples --------- >>> from pgmpy.models import BayesianModel >>> student = BayesianModel() >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> student.get_immoralities() {('diff','intel')} """ immoralities = set() for node in self.nodes(): for parents in itertools.combinations(self.predecessors(node), 2): if not self.has_edge(parents[0], parents[1]) and not self.has_edge(parents[1], parents[0]): immoralities.add(tuple(sorted(parents))) return immoralities
[docs] def is_iequivalent(self, model): """ Checks whether the given model is I-equivalent Two graphs G1 and G2 are said to be I-equivalent if they have same skeleton and have same set of immoralities. Note: For same skeleton different names of nodes can work but for immoralities names of nodes must be same Parameters ---------- model : A Bayesian model object, for which you want to check I-equivalence Returns -------- boolean : True if both are I-equivalent, False otherwise Examples -------- >>> from pgmpy.models import BayesianModel >>> G = BayesianModel() >>> G.add_edges_from([('V', 'W'), ('W', 'X'), ... ('X', 'Y'), ('Z', 'Y')]) >>> G1 = BayesianModel() >>> G1.add_edges_from([('W', 'V'), ('X', 'W'), ... ('X', 'Y'), ('Z', 'Y')]) >>> G.is_iequivalent(G1) True """ if not isinstance(model, BayesianModel): raise TypeError('model must be an instance of Bayesian Model') skeleton = nx.algorithms.isomorphism.GraphMatcher(self.to_undirected(), model.to_undirected()) if skeleton.is_isomorphic() and self.get_immoralities() == model.get_immoralities(): return True return False
[docs] def is_imap(self, JPD): """ Checks whether the bayesian model is Imap of given JointProbabilityDistribution Parameters ----------- JPD : An instance of JointProbabilityDistribution Class, for which you want to check the Imap Returns -------- boolean : True if bayesian model is Imap for given Joint Probability Distribution False otherwise Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd) >>> val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032, 0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128] >>> JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val) >>> G.is_imap(JPD) True """ if not isinstance(JPD, JointProbabilityDistribution): raise TypeError("JPD must be an instance of JointProbabilityDistribution") factors = [cpd.to_factor() for cpd in self.get_cpds()] factor_prod = reduce(mul, factors) JPD_fact = DiscreteFactor(JPD.variables, JPD.cardinality, JPD.values) if JPD_fact == factor_prod: return True else: return False
[docs] def copy(self): """ Returns a copy of the model. Returns ------- BayesianModel: Copy of the model on which the method was called. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> model = BayesianModel([('A', 'B'), ('B', 'C')]) >>> cpd_a = TabularCPD('A', 2, [[0.2], [0.8]]) >>> cpd_b = TabularCPD('B', 2, [[0.3, 0.7], [0.7, 0.3]], evidence=['A'], evidence_card=[2]) >>> cpd_c = TabularCPD('C', 2, [[0.1, 0.9], [0.9, 0.1]], evidence=['B'], evidence_card=[2]) >>> model.add_cpds(cpd_a, cpd_b, cpd_c) >>> copy_model = model.copy() >>> copy_model.nodes() ['C', 'A', 'B'] >>> copy_model.edges() [('A', 'B'), ('B', 'C')] >>> copy_model.get_cpds() [<TabularCPD representing P(A:2) at 0x7f2824930a58>, <TabularCPD representing P(B:2 | A:2) at 0x7f2824930a90>, <TabularCPD representing P(C:2 | B:2) at 0x7f2824944240>] """ model_copy = BayesianModel() model_copy.add_nodes_from(self.nodes()) model_copy.add_edges_from(self.edges()) if self.cpds: model_copy.add_cpds(*[cpd.copy() for cpd in self.cpds]) return model_copy