.. pgmpy documentation master file, created by
sphinx-quickstart on Tue Aug 30 18:17:42 2016.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
.. |br| raw:: html
.. image:: https://github.com/pgmpy/pgmpy/actions/workflows/ci.yml/badge.svg?branch=dev
:target: https://github.com/pgmpy/pgmpy/actions?query=branch%3Adev
.. image:: https://img.shields.io/pypi/dm/pgmpy.svg
:target: https://pypistats.org/packages/pgmpy
.. image:: https://img.shields.io/pypi/v/pgmpy?color=blue
:target: https://pypi.org/project/pgmpy/
.. image:: https://img.shields.io/pypi/pyversions/pgmpy.svg?color=blue
:target: https://pypi.org/project/pgmpy/
.. image:: https://img.shields.io/github/license/pgmpy/pgmpy
:target: https://github.com/pgmpy/pgmpy/blob/dev/LICENSE
.. image:: http://img.shields.io/badge/benchmarked%20by-asv-blue.svg?style=flat
:target: http://pgmpy.org/pgmpy-benchmarks/
.. |br| raw:: html
.. image:: https://img.shields.io/badge/Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white
:align: center
:target: https://discord.gg/DRkdKaumBs
.. toctree::
:maxdepth: 2
:hidden:
started/base.rst
examples.rst
models/base.rst
factors/base.rst
infer/base.rst
causal_infer/base.rst
param_estimator/base.rst
structure_estimator/base.rst
metrics/metrics.rst
readwrite/base.rst
plotting.rst
tutorial.rst
pgmpy is a Python package for causal inference and probabilistic inference
using Directed Acyclic Graphs (DAGs) and Bayesian Networks with a focus on
modularity and extensibility. Implementations of various algorithms for Causal
Discovery (a.k.a, Structure Learning), Parameter Estimation, Approximate
(Sampling Based) and Exact inference, and Causal Inference are available.
|
.. figure:: pgmpy_workflow.png
:alt: Possible Workflows in pgmpy for Directed Acyclic Graphs (DAGs) and Bayesian Networks (BNs).
Possible Workflows in pgmpy for Directed Acyclic Graphs (DAGs) and Bayesian Networks (BNs).
|
Supported Data Types
====================
.. list-table::
:header-rows: 1
* -
- Causal Discovery
- Parameter Estimation
- Causal Inference
- Probabilistic Inference
- Simulations
* - **Categorical**
- Yes
- Yes
- Yes
- Yes
- Yes
* - **Continuous**
- Yes
- Yes
- Yes (partial)
- Yes
- Yes
* - **Mixed**
- Yes
- No
- No
- No
- Yes
* - **Time Series**
- No
- Yes
- Yes (ApproximateInference)
- Yes
- Yes
|
Algorithms
==========
.. csv-table::
:file: algorithms.csv
:header-rows: 1
|
Examples
========
**Example notebooks:** :doc:`examples`
**Tutorial notebooks:** :doc:`tutorial`
|
Citation
========
If you use pgmpy in your scientific work, please consider citing us:
.. code-block:: text
Ankur Ankan, & Johannes Textor (2024). pgmpy: A Python Toolkit for Bayesian Networks. Journal of Machine Learning Research, 25(265), 1–8.
Bibtex:
.. code-block:: text
@article{Ankan2024,
author = {Ankur Ankan and Johannes Textor},
title = {pgmpy: A Python Toolkit for Bayesian Networks},
journal = {Journal of Machine Learning Research},
year = {2024},
volume = {25},
number = {265},
pages = {1--8},
url = {http://jmlr.org/papers/v25/23-0487.html}
}