.. pgmpy documentation master file, created by sphinx-quickstart on Tue Aug 30 18:17:42 2016. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. .. |br| raw:: html
.. image:: https://github.com/pgmpy/pgmpy/actions/workflows/ci.yml/badge.svg?branch=dev :target: https://github.com/pgmpy/pgmpy/actions?query=branch%3Adev .. image:: https://img.shields.io/pypi/dm/pgmpy.svg :target: https://pypistats.org/packages/pgmpy .. image:: https://img.shields.io/pypi/v/pgmpy?color=blue :target: https://pypi.org/project/pgmpy/ .. image:: https://img.shields.io/pypi/pyversions/pgmpy.svg?color=blue :target: https://pypi.org/project/pgmpy/ .. image:: https://img.shields.io/github/license/pgmpy/pgmpy :target: https://github.com/pgmpy/pgmpy/blob/dev/LICENSE .. image:: http://img.shields.io/badge/benchmarked%20by-asv-blue.svg?style=flat :target: http://pgmpy.org/pgmpy-benchmarks/ .. |br| raw:: html

.. image:: https://img.shields.io/badge/Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white :align: center :target: https://discord.gg/DRkdKaumBs .. toctree:: :maxdepth: 2 :hidden: started/base.rst examples.rst models/base.rst factors/base.rst infer/base.rst causal_infer/base.rst param_estimator/base.rst structure_estimator/base.rst metrics/metrics.rst readwrite/base.rst plotting.rst tutorial.rst pgmpy is a Python package for causal inference and probabilistic inference using Directed Acyclic Graphs (DAGs) and Bayesian Networks with a focus on modularity and extensibility. Implementations of various algorithms for Causal Discovery (a.k.a, Structure Learning), Parameter Estimation, Approximate (Sampling Based) and Exact inference, and Causal Inference are available. | .. figure:: pgmpy_workflow.png :alt: Possible Workflows in pgmpy for Directed Acyclic Graphs (DAGs) and Bayesian Networks (BNs). Possible Workflows in pgmpy for Directed Acyclic Graphs (DAGs) and Bayesian Networks (BNs). | Supported Data Types ==================== .. list-table:: :header-rows: 1 * - - Causal Discovery - Parameter Estimation - Causal Inference - Probabilistic Inference - Simulations * - **Categorical** - Yes - Yes - Yes - Yes - Yes * - **Continuous** - Yes - Yes - Yes (partial) - Yes - Yes * - **Mixed** - Yes - No - No - No - Yes * - **Time Series** - No - Yes - Yes (ApproximateInference) - Yes - Yes | Algorithms ========== .. csv-table:: :file: algorithms.csv :header-rows: 1 | Examples ======== **Example notebooks:** :doc:`examples` **Tutorial notebooks:** :doc:`tutorial` | Citation ======== If you use pgmpy in your scientific work, please consider citing us: .. code-block:: text Ankur Ankan, & Johannes Textor (2024). pgmpy: A Python Toolkit for Bayesian Networks. Journal of Machine Learning Research, 25(265), 1–8. Bibtex: .. code-block:: text @article{Ankan2024, author = {Ankur Ankan and Johannes Textor}, title = {pgmpy: A Python Toolkit for Bayesian Networks}, journal = {Journal of Machine Learning Research}, year = {2024}, volume = {25}, number = {265}, pages = {1--8}, url = {http://jmlr.org/papers/v25/23-0487.html} }