Discrete¶
TabularCPD¶
Contains the different formats of CPDs used in PGM
- class pgmpy.factors.discrete.CPD.TabularCPD(variable, variable_card, values, evidence=None, evidence_card=None, state_names={})[source]¶
Defines the conditional probability distribution table (CPD table)
- Parameters:
variable (int, string (any hashable python object)) – The variable whose CPD is defined.
variable_card (integer) – Cardinality/no. of states of variable
values (2D array, 2D list or 2D tuple) – Values for the CPD table. Please refer the example for the exact format needed.
evidence (array-like) – List of variables in evidences(if any) w.r.t. which CPD is defined.
evidence_card (array-like) – cardinality/no. of states of variables in `evidence`(if any)
state_names (dict (default: dict())) – A dictionary of the form {variable: list of states} specifying the names of possible states for each variable (variable + evidence) in the TabularCPD. The order in which the states are specified should match the order in the values array. If state_names is not specified, auto-assigns state names starting from 0.
Examples
For a distribution of P(grade|diff, intel)
diff
easy
hard
intel
low
medium
high
low
medium
high
gradeA
0.1
0.1
0.1
0.1
0.1
0.1
gradeB
0.1
0.1
0.1
0.1
0.1
0.1
gradeC
0.8
0.8
0.8
0.8
0.8
0.8
the values array should be [[0.1,0.1,0.1,0.1,0.1,0.1],
[0.1,0.1,0.1,0.1,0.1,0.1], [0.8,0.8,0.8,0.8,0.8,0.8]]
>>> cpd = TabularCPD(variable='grade', ... variable_card=3, ... values=[[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3], ... state_names={'diff': ['easy', 'hard'], ... 'intel': ['low', 'mid', 'high'], ... 'grade': ['A', 'B', 'C']}) >>> print(cpd) +---------+----------+----------+-----------+----------+----------+-----------+ | diff |diff(easy)|diff(easy)|diff(easy) |diff(hard)|diff(hard)|diff(hard) | +---------+----------+----------+-----------+----------+----------+-----------+ | intel |intel(low)|intel(mid)|intel(high)|intel(low)|intel(mid)|intel(high)| +---------+----------+----------+-----------+----------+----------+-----------+ | grade(A)| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +---------+----------+----------+-----------+----------+----------+-----------+ | grade(B)| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +---------+----------+----------+-----------+----------+----------+-----------+ | grade(C)| 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | +---------+----------+----------+-----------+----------+----------+-----------+ >>> cpd.values array([[[ 0.1, 0.1, 0.1], [ 0.1, 0.1, 0.1]], [[ 0.1, 0.1, 0.1], [ 0.1, 0.1, 0.1]], [[ 0.8, 0.8, 0.8], [ 0.8, 0.8, 0.8]]]) >>> cpd.variables ['grade', 'diff', 'intel'] >>> cpd.cardinality array([3, 2, 3]) >>> cpd.variable 'grade' >>> cpd.variable_card 3
- copy()[source]¶
Returns a copy of the TabularCPD object.
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd = TabularCPD('grade', 2, ... [[0.7, 0.6, 0.6, 0.2],[0.3, 0.4, 0.4, 0.8]], ... ['intel', 'diff'], [2, 2]) >>> copy = cpd.copy() >>> copy.variable 'grade' >>> copy.variable_card 2 >>> copy.evidence ['intel', 'diff'] >>> copy.values array([[[ 0.7, 0.6], [ 0.6, 0.2]], [[ 0.3, 0.4], [ 0.4, 0.8]]])
- static get_random(variable, evidence=None, cardinality=None, state_names={}, seed=None)[source]¶
Generates a TabularCPD instance with random values on variable with parents/evidence evidence with cardinality/number of states as given in cardinality.
- Parameters:
variable (str, int or any hashable python object.) – The variable on which to define the TabularCPD.
evidence (list, array-like) – A list of variable names which are the parents/evidence of variable.
cardinality (dict (default: None)) – A dict of the form {var_name: card} specifying the number of states/ cardinality of each of the variables. If None, assigns each variable 2 states.
state_names (dict (default: {})) – A dict of the form {var_name: list of states} to specify the state names for the variables in the CPD. If state_names=None, integral state names starting from 0 is assigned.
- Returns:
Random CPD – A TabularCPD object on variable with evidence as evidence with random values.
- Return type:
pgmpy.factors.discrete.TabularCPD
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> TabularCPD(variable='A', evidence=['C', 'D'], ... cardinality={'A': 3, 'B': 2, 'C': 4}) <TabularCPD representing P(A:3 | C:4, B:2) at 0x7f95e22b8040> >>> TabularCPD(variable='A', evidence=['C', 'D'], ... cardinality={'A': 2, 'B': 2, 'C': 2}, ... state_names={'A': ['a1', 'a2'], ... 'B': ['b1', 'b2'], ... 'C': ['c1', 'c2']})
- get_values()[source]¶
Returns the values of the CPD as a 2-D array. The order of the parents is the same as provided in evidence.
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd = TabularCPD('grade', 3, [[0.1, 0.1], ... [0.1, 0.1], ... [0.8, 0.8]], ... evidence='evi1', evidence_card=2) >>> cpd.get_values() array([[ 0.1, 0.1], [ 0.1, 0.1], [ 0.8, 0.8]])
- marginalize(variables, inplace=True)[source]¶
Modifies the CPD table with marginalized values. Marginalization refers to summing out variables, hence that variable would no longer appear in the CPD.
- Parameters:
variables (list, array-like) – list of variable to be marginalized
inplace (boolean) – If inplace=True it will modify the CPD itself, else would return a new CPD
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd_table = TabularCPD('grade', 2, ... [[0.7, 0.6, 0.6, 0.2],[0.3, 0.4, 0.4, 0.8]], ... ['intel', 'diff'], [2, 2]) >>> cpd_table.marginalize(['diff']) >>> cpd_table.get_values() array([[ 0.65, 0.4 ], [ 0.35, 0.6 ]])
- normalize(inplace=True)[source]¶
Normalizes the cpd table. The method modifies each column of values such that it sums to 1 without changing the proportion between states.
- Parameters:
inplace (boolean) – If inplace=True it will modify the CPD itself, else would return a new CPD
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd_table = TabularCPD('grade', 2, ... [[0.7, 0.2, 0.6, 0.2],[0.4, 0.4, 0.4, 0.8]], ... ['intel', 'diff'], [2, 2]) >>> cpd_table.normalize() >>> cpd_table.get_values() array([[ 0.63636364, 0.33333333, 0.6 , 0.2 ], [ 0.36363636, 0.66666667, 0.4 , 0.8 ]])
- reduce(values, inplace=True, show_warnings=True)[source]¶
Reduces the cpd table to the context of given variable values. Reduce fixes the state of given variable to specified value. The reduced variables will no longer appear in the CPD.
- Parameters:
values (list, array-like) – A list of tuples of the form (variable_name, variable_state).
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd_table = TabularCPD('grade', 2, ... [[0.7, 0.6, 0.6, 0.2],[0.3, 0.4, 0.4, 0.8]], ... ['intel', 'diff'], [2, 2]) >>> cpd_table.reduce([('diff', 0)]) >>> cpd_table.get_values() array([[ 0.7, 0.6], [ 0.3, 0.4]])
- reorder_parents(new_order, inplace=True)[source]¶
Returns a new cpd table according to provided parent/evidence order.
- Parameters:
new_order (list) – list of new ordering of variables
inplace (boolean) – If inplace == True it will modify the CPD itself otherwise new value will be returned without affecting old values
Examples
Consider a CPD P(grade| diff, intel)
>>> cpd = TabularCPD('grade',3,[[0.1,0.1,0.0,0.4,0.2,0.1], ... [0.3,0.2,0.1,0.4,0.3,0.2], ... [0.6,0.7,0.9,0.2,0.5,0.7]], ... evidence=['diff', 'intel'], evidence_card=[2,3]) >>> print(cpd) +----------+----------+----------+----------+----------+----------+----------+ | diff | diff(0) | diff(0) | diff(0) | diff(1) | diff(1) | diff(1) | +----------+----------+----------+----------+----------+----------+----------+ | intel | intel(0) | intel(1) | intel(2) | intel(0) | intel(1) | intel(2) | +----------+----------+----------+----------+----------+----------+----------+ | grade(0) | 0.1 | 0.1 | 0.0 | 0.4 | 0.2 | 0.1 | +----------+----------+----------+----------+----------+----------+----------+ | grade(1) | 0.3 | 0.2 | 0.1 | 0.4 | 0.3 | 0.2 | +----------+----------+----------+----------+----------+----------+----------+ | grade(2) | 0.6 | 0.7 | 0.9 | 0.2 | 0.5 | 0.7 | +----------+----------+----------+----------+----------+----------+----------+ >>> cpd.values array([[[ 0.1, 0.1, 0. ], [ 0.4, 0.2, 0.1]], [[ 0.3, 0.2, 0.1], [ 0.4, 0.3, 0.2]], [[ 0.6, 0.7, 0.9], [ 0.2, 0.5, 0.7]]]) >>> cpd.variables ['grade', 'diff', 'intel'] >>> cpd.cardinality array([3, 2, 3]) >>> cpd.variable 'grade' >>> cpd.variable_card 3 >>> cpd.reorder_parents(['intel', 'diff']) array([[0.1, 0.4, 0.1, 0.2, 0. , 0.1], [0.3, 0.4, 0.2, 0.3, 0.1, 0.2], [0.6, 0.2, 0.7, 0.5, 0.9, 0.7]]) >>> print(cpd) +----------+----------+----------+----------+----------+----------+----------+ | intel | intel(0) | intel(0) | intel(1) | intel(1) | intel(2) | intel(2) | +----------+----------+----------+----------+----------+----------+----------+ | diff | diff(0) | diff(1) | diff(0) | diff(1) | diff(0) | diff(1) | +----------+----------+----------+----------+----------+----------+----------+ | grade(0) | 0.1 | 0.4 | 0.1 | 0.2 | 0.0 | 0.1 | +----------+----------+----------+----------+----------+----------+----------+ | grade(1) | 0.3 | 0.4 | 0.2 | 0.3 | 0.1 | 0.2 | +----------+----------+----------+----------+----------+----------+----------+ | grade(2) | 0.6 | 0.2 | 0.7 | 0.5 | 0.9 | 0.7 | +----------+----------+----------+----------+----------+----------+----------+ >>> cpd.values array([[[0.1, 0.4], [0.1, 0.2], [0. , 0.1]], [[0.3, 0.4], [0.2, 0.3], [0.1, 0.2]], [[0.6, 0.2], [0.7, 0.5], [0.9, 0.7]]]) >>> cpd.variables ['grade', 'intel', 'diff'] >>> cpd.cardinality array([3, 3, 2]) >>> cpd.variable 'grade' >>> cpd.variable_card 3
- to_csv(filename)[source]¶
Exports the CPD to a CSV file.
Examples
>>> from pgmpy.utils import get_example_model >>> model = get_example_model("alarm") >>> cpd = model.get_cpds("SAO2") >>> cpd.to_csv(filename="sao2.cs")
- to_factor()[source]¶
Returns an equivalent factor with the same variables, cardinality, values as that of the CPD. Since factor doesn’t distinguish between conditional and non-conditional distributions, evidence information will be lost.
Examples
>>> from pgmpy.factors.discrete import TabularCPD >>> cpd = TabularCPD('grade', 3, [[0.1, 0.1], ... [0.1, 0.1], ... [0.8, 0.8]], ... evidence='evi1', evidence_card=2) >>> factor = cpd.to_factor() >>> factor <DiscreteFactor representing phi(grade:3, evi1:2) at 0x7f847a4f2d68>
Discrete Factor¶
- class pgmpy.factors.discrete.DiscreteFactor.DiscreteFactor(variables, cardinality, values, state_names={})[source]¶
Initialize a DiscreteFactor class.
Defined above, we have the following mapping from variable assignments to the index of the row vector in the value field:
x1
x2
x3
phi(x1, x2, x3)
x1_0
x2_0
x3_0
phi.value(0)
x1_0
x2_0
x3_1
phi.value(1)
x1_0
x2_1
x3_0
phi.value(2)
x1_0
x2_1
x3_1
phi.value(3)
x1_1
x2_0
x3_0
phi.value(4)
x1_1
x2_0
x3_1
phi.value(5)
x1_1
x2_1
x3_0
phi.value(6)
x1_1
x2_1
x3_1
phi.value(7)
- Parameters:
variables (list, array-like) – List of variables on which the factor is to be defined i.e. scope of the factor.
cardinality (list, array_like) – List of cardinalities/no.of states of each variable. cardinality array must have a value corresponding to each variable in variables.
values (list, array_like) – List of values of factor. A DiscreteFactor’s values are stored in a row vector in the value using an ordering such that the left-most variables as defined in variables cycle through their values the fastest. Please refer to examples for usage examples.
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 2, 2], np.ones(8)) >>> phi <DiscreteFactor representing phi(x1:2, x2:2, x3:2) at 0x7f8188fcaa90> >>> print(phi) +------+------+------+-----------------+ | x1 | x2 | x3 | phi(x1,x2,x3) | |------+------+------+-----------------| | x1_0 | x2_0 | x3_0 | 1.0000 | | x1_0 | x2_0 | x3_1 | 1.0000 | | x1_0 | x2_1 | x3_0 | 1.0000 | | x1_0 | x2_1 | x3_1 | 1.0000 | | x1_1 | x2_0 | x3_0 | 1.0000 | | x1_1 | x2_0 | x3_1 | 1.0000 | | x1_1 | x2_1 | x3_0 | 1.0000 | | x1_1 | x2_1 | x3_1 | 1.0000 | +------+------+------+-----------------+
- assignment(index)[source]¶
Returns a list of assignments (variable and state) for the corresponding index.
- Parameters:
index (list, array-like) – List of indices whose assignment is to be computed
- Returns:
Full assignments – Returns a list of full assignments of all the variables of the factor.
- Return type:
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['diff', 'intel'], [2, 2], np.ones(4)) >>> phi.assignment([1, 2]) [[('diff', 0), ('intel', 1)], [('diff', 1), ('intel', 0)]]
- copy()[source]¶
Returns a copy of the factor.
- Returns:
Copy of self – A copy of the original discrete factor.
- Return type:
pgmpy.factors.discrete.DiscreteFactor
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 3], np.arange(18)) >>> phi_copy = phi.copy() >>> phi_copy.variables ['x1', 'x2', 'x3'] >>> phi_copy.cardinality array([2, 3, 3]) >>> phi_copy.values array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]]])
- divide(phi1, inplace=True)[source]¶
DiscreteFactor division by phi1.
- Parameters:
phi1 (DiscreteFactor instance) – The denominator for division.
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
- Returns:
Divided factor – If inplace=True (default) returns None else returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x1'], [2, 2], range(1, 5)) >>> phi1.divide(phi2) >>> phi1.variables ['x1', 'x2', 'x3'] >>> phi1.cardinality array([2, 3, 2]) >>> phi1.values array([[[ 0. , 0.33333333], [ 2. , 1. ], [ 4. , 1.66666667]], [[ 3. , 1.75 ], [ 4. , 2.25 ], [ 5. , 2.75 ]]])
- get_cardinality(variables)[source]¶
Returns the cardinality/no.of states of each variable in variables.
- Parameters:
variables (list, array-like) – A list of variable names.
- Returns:
Cardinality of variables – Dictionary of the form {variable: variable_cardinality}
- Return type:
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi.get_cardinality(['x1']) {'x1': 2} >>> phi.get_cardinality(['x1', 'x2']) {'x1': 2, 'x2': 3}
- get_value(**kwargs)[source]¶
Returns the value of the given variable states. Assumes that the arguments specified are state names, and falls back to considering it as state no if can’t find the state name.
- Parameters:
kwargs (named arguments of the form variable=state_name) – Spcifies the state of each of the variable for which to get the value.
- Returns:
value of kwargs – The value of specified states.
- Return type:
Examples
>>> from pgmpy.utils import get_example_model >>> model = get_example_model("asia") >>> phi = model.get_cpds("either").to_factor() >>> phi.get_value(lung="yes", tub="no", either="yes") 1.0
- identity_factor()[source]¶
Returns the identity factor.
- Def: The identity factor of a factor has the same scope and cardinality as the original factor,
but the values for all the assignments is 1. When the identity factor is multiplied with the factor it returns the factor itself.
- Returns:
Identity factor – Returns a factor with all values set to 1.
- Return type:
pgmpy.factors.discrete.DiscreteFactor.
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi_identity = phi.identity_factor() >>> phi_identity.variables ['x1', 'x2', 'x3'] >>> phi_identity.values array([[[ 1., 1.], [ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.], [ 1., 1.]]])
- marginalize(variables, inplace=True)[source]¶
Modifies the factor with marginalized values.
- Parameters:
variables (list, array-like) – List of variables over which to marginalize.
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
- Returns:
Marginalized factor (pgmpy.factors.discrete.DiscreteFactor or None)
If inplace=True (default) returns None else returns a new DiscreteFactor instance.
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi.marginalize(['x1', 'x3']) >>> phi.values array([14., 22., 30.]) >>> phi.variables ['x2']
- maximize(variables, inplace=True)[source]¶
Maximizes the factor with respect to variables.
- Parameters:
variables (list, array-like) – List of variables with respect to which factor is to be maximized
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
- Returns:
Maximized factor – If inplace=True (default) returns None else inplace=False returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [3, 2, 2], [0.25, 0.35, 0.08, 0.16, 0.05, 0.07, ... 0.00, 0.00, 0.15, 0.21, 0.09, 0.18]) >>> phi.variables ['x1', 'x2', 'x3'] >>> phi.maximize(['x2']) >>> phi.variables ['x1', 'x3'] >>> phi.cardinality array([3, 2]) >>> phi.values array([[ 0.25, 0.35], [ 0.05, 0.07], [ 0.15, 0.21]])
- normalize(inplace=True)[source]¶
Normalizes the values of factor so that they sum to 1.
- Parameters:
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor
- Returns:
Normalized factor – If inplace=True (default) returns None else returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi.values array([[[ 0., 1.], [ 2., 3.], [ 4., 5.]], [[ 6., 7.], [ 8., 9.], [10., 11.]]]) >>> phi.normalize() >>> phi.variables ['x1', 'x2', 'x3'] >>> phi.cardinality array([2, 3, 2]) >>> phi.values array([[[ 0. , 0.01515152], [ 0.03030303, 0.04545455], [ 0.06060606, 0.07575758]], [[ 0.09090909, 0.10606061], [ 0.12121212, 0.13636364], [ 0.15151515, 0.16666667]]])
- product(phi1, inplace=True)[source]¶
DiscreteFactor product with phi1.
- Parameters:
phi1 (float or DiscreteFactor instance) – If float, all the values are multiplied with phi1. else if DiscreteFactor instance, mutliply based on matching rows.
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
- Returns:
Multiplied factor – If inplace=True (default) returns None else returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> phi1.product(phi2, inplace=True) >>> phi1.variables ['x1', 'x2', 'x3', 'x4'] >>> phi1.cardinality array([2, 3, 2, 2]) >>> phi1.values array([[[[ 0, 0], [ 4, 6]], [[ 0, 4], [12, 18]], [[ 0, 8], [20, 30]]], [[[ 6, 18], [35, 49]], [[ 8, 24], [45, 63]], [[10, 30], [55, 77]]]]
- reduce(values, inplace=True, show_warnings=True)[source]¶
Reduces the factor to the context of given variable values. The variables which are reduced would be removed from the factor.
- Parameters:
values (list, array-like) – A list of tuples of the form (variable_name, variable_state).
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
show_warnings (boolean) – Whether to show warning when state name not found.
- Returns:
Reduced factor – If inplace=True (default) returns None else returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi.reduce([('x1', 0), ('x2', 0)]) >>> phi.variables ['x3'] >>> phi.cardinality array([2]) >>> phi.values array([0., 1.])
- sample(n, seed=None)[source]¶
Normalizes the factor and samples state combinations from it.
- Parameters:
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi1.sample(5) x1 x2 x3 0 1 0 0 1 0 2 0 2 1 2 0 3 1 1 1 4 1 1 1
- scope()[source]¶
Returns the scope of the factor i.e. the variables on which the factor is defined.
- Returns:
Scope of the factor – List of variables on which the factor is defined.
- Return type:
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)) >>> phi.scope() ['x1', 'x2', 'x3']
- set_value(value, **kwargs)[source]¶
Sets the probability value of the given variable states.
- Parameters:
value (float) – The value for the specified state.
kwargs (named arguments of the form variable=state_name) – Spcifies the state of each of the variable for which to get the probability value.
- Return type:
None
Examples
>>> from pgmpy.utils import get_example_model >>> model = get_example_model("asia") >>> phi = model.get_cpds("either").to_factor() >>> phi.set_value(value=0.1, lung="yes", tub="no", either="yes") >>> phi.get_value(lung='yes', tub='no', either='yes') 0.1
- sum(phi1, inplace=True)[source]¶
DiscreteFactor sum with phi1.
- Parameters:
phi1 (float or DiscreteFactor instance.) – If float, the value is added to each value in the factor. DiscreteFactor to be added.
inplace (boolean) – If inplace=True it will modify the factor itself, else would return a new factor.
- Returns:
Summed factor – If inplace=True (default) returns None else returns a new DiscreteFactor instance.
- Return type:
pgmpy.factors.discrete.DiscreteFactor or None
Examples
>>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> phi1.sum(phi2, inplace=True) >>> phi1.variables ['x1', 'x2', 'x3', 'x4'] >>> phi1.cardinality array([2, 3, 2, 2]) >>> phi1.values array([[[[ 0., 2.], [ 5., 7.]], [[ 2., 4.], [ 7., 9.]], [[ 4., 6.], [ 9., 11.]]], [[[ 7., 9.], [12., 14.]], [[ 9., 11.], [14., 16.]], [[11., 13.], [16., 18.]]]])
Joint Probability Distribution¶
- class pgmpy.factors.discrete.JointProbabilityDistribution.JointProbabilityDistribution(variables, cardinality, values)[source]¶
Base class for Joint Probability Distribution
- check_independence(event1, event2, event3=None, condition_random_variable=False)[source]¶
Check if the Joint Probability Distribution satisfies the given independence condition.
- Parameters:
event1 (list) – random variable whose independence is to be checked.
event2 (list) – random variable from which event1 is independent.
values (2D array or list like or 1D array or list like) – A 2D list of tuples of the form (variable_name, variable_state). A 1D list or array-like to condition over randome variables (condition_random_variable must be True) The values on which to condition the Joint Probability Distribution.
condition_random_variable (Boolean (Default false)) – If true and event3 is not None than will check independence condition over random variable.
X (For random variables say)
Y
Z. (event3 should)
Y. (event1 should be either X or)
X. (event2 should be either Y or)
Z.
Examples
>>> from pgmpy.factors.discrete import JointProbabilityDistribution as JPD >>> prob = JPD(['I','D','G'],[2,2,3], [0.126,0.168,0.126,0.009,0.045,0.126,0.252,0.0224,0.0056,0.06,0.036,0.024]) >>> prob.check_independence(['I'], ['D']) True >>> prob.check_independence(['I'], ['D'], [('G', 1)]) # Conditioning over G_1 False >>> # Conditioning over random variable G >>> prob.check_independence(['I'], ['D'], ('G',), condition_random_variable=True) False
- conditional_distribution(values, inplace=True)[source]¶
Returns Conditional Probability Distribution after setting values to 1.
- Parameters:
values (list or array_like) – A list of tuples of the form (variable_name, variable_state). The values on which to condition the Joint Probability Distribution.
inplace (Boolean (default True)) – If False returns a new instance of JointProbabilityDistribution
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 2, 2], np.ones(8)/8) >>> prob.conditional_distribution([('x1', 1)]) >>> print(prob) x2 x3 P(x2,x3) ---- ---- ---------- x2_0 x3_0 0.2500 x2_0 x3_1 0.2500 x2_1 x3_0 0.2500 x2_1 x3_1 0.2500
- copy()[source]¶
Returns A copy of JointProbabilityDistribution object
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12) >>> prob_copy = prob.copy() >>> prob_copy.values == prob.values True >>> prob_copy.variables == prob.variables True >>> prob_copy.variables[1] = 'y' >>> prob_copy.variables == prob.variables False
- get_independencies(condition=None)[source]¶
Returns the independent variables in the joint probability distribution. Returns marginally independent variables if condition=None. Returns conditionally independent variables if condition!=None
- Parameters:
condition (array_like) – Random Variable on which to condition the Joint Probability Distribution.
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12) >>> prob.get_independencies() (x1 ⟂ x2) (x1 ⟂ x3) (x2 ⟂ x3)
- is_imap(model)[source]¶
Checks whether the given BayesianNetwork is Imap of JointProbabilityDistribution
- Parameters:
model (An instance of BayesianNetwork Class, for which you want to) – check the Imap
- Returns:
Is IMAP – True if given Bayesian Network is Imap for Joint Probability Distribution False otherwise
- Return type:
Examples
>>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> bm = BayesianNetwork([('diff', 'grade'), ('intel', 'grade')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> bm.add_cpds(diff_cpd, intel_cpd, grade_cpd) >>> val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032, ... 0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128] >>> JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val) >>> JPD.is_imap(bm) True
- marginal_distribution(variables, inplace=True)[source]¶
Returns the marginal distribution over variables.
- Parameters:
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> values = np.random.rand(12) >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], values/np.sum(values)) >>> prob.marginal_distribution(['x1', 'x2']) >>> print(prob) x1 x2 P(x1,x2) ---- ---- ---------- x1_0 x2_0 0.1502 x1_0 x2_1 0.1626 x1_0 x2_2 0.1197 x1_1 x2_0 0.2339 x1_1 x2_1 0.1996 x1_1 x2_2 0.1340
- minimal_imap(order)[source]¶
Returns a Bayesian Model which is minimal IMap of the Joint Probability Distribution considering the order of the variables.
- Parameters:
order (array-like) – The order of the random variables.
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12) >>> bayesian_model = prob.minimal_imap(order=['x2', 'x1', 'x3']) >>> bayesian_model <pgmpy.models.models.models at 0x7fd7440a9320> >>> bayesian_model.edges() [('x1', 'x3'), ('x2', 'x3')]
- to_factor()[source]¶
Returns JointProbabilityDistribution as a DiscreteFactor object
Examples
>>> import numpy as np >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12) >>> phi = prob.to_factor() >>> type(phi) pgmpy.factors.DiscreteFactor.DiscreteFactor