Source code for pgmpy.estimators.CITests

import numpy as np
import pandas as pd
from scipy import stats
from sklearn.cross_decomposition import CCA
from statsmodels.multivariate.manova import MANOVA
from xgboost import XGBClassifier, XGBRegressor

from pgmpy.global_vars import logger
from pgmpy.independencies import IndependenceAssertion


[docs] def independence_match(X, Y, Z, independencies, **kwargs): """ Checks if `X \u27C2 Y | Z` is in `independencies`. This method is implemented to have an uniform API when the independencies are provided instead of data. Parameters ---------- X: str The first variable for testing the independence condition X \u27C2 Y | Z Y: str The second variable for testing the independence condition X \u27C2 Y | Z Z: list/array-like A list of conditional variable for testing the condition X \u27C2 Y | Z data: pandas.DataFrame The dataset in which to test the indepenedence condition. Returns ------- p-value: float (Fixed to 0 since it is always confident) """ return IndependenceAssertion(X, Y, Z) in independencies
[docs] def chi_square(X, Y, Z, data, boolean=True, **kwargs): """ Chi-square conditional independence test. Tests the null hypothesis that X is independent from Y given Zs. This is done by comparing the observed frequencies with the expected frequencies if X,Y were conditionally independent, using a chisquare deviance statistic. The expected frequencies given independence are :math:`P(X,Y,Zs) = P(X|Zs)*P(Y|Zs)*P(Zs)`. The latter term can be computed as :math:`P(X,Zs)*P(Y,Zs)/P(Zs). Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list, array-like A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] https://en.wikipedia.org/wiki/Chi-squared_test Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> chi_square(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> chi_square(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> chi_square(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="pearson", **kwargs )
[docs] def g_sq(X, Y, Z, data, boolean=True, **kwargs): """ G squared test for conditional independence. Also commonly known as G-test, likelihood-ratio or maximum likelihood statistical significance test. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] https://en.wikipedia.org/wiki/G-test Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> g_sq(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> g_sq(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> g_sq(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="log-likelihood", **kwargs )
[docs] def log_likelihood(X, Y, Z, data, boolean=True, **kwargs): """ Log likelihood ratio test for conditional independence. Also commonly known as G-test, G-squared test or maximum likelihood statistical significance test. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] https://en.wikipedia.org/wiki/G-test Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> log_likelihood(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="log-likelihood", **kwargs )
[docs] def freeman_tuckey(X, Y, Z, data, boolean=True, **kwargs): """ Freeman Tuckey test for conditional independence [1]. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] Read, Campbell B. "Freeman—Tukey chi-squared goodness-of-fit statistics." Statistics & probability letters 18.4 (1993): 271-278. Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> freeman_tuckey(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> freeman_tuckey(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> freeman_tuckey(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="freeman-tukey", **kwargs )
[docs] def modified_log_likelihood(X, Y, Z, data, boolean=True, **kwargs): """ Modified log likelihood ratio test for conditional independence. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> modified_log_likelihood(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> modified_log_likelihood(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> modified_log_likelihood(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="mod-log-likelihood", **kwargs, )
[docs] def neyman(X, Y, Z, data, boolean=True, **kwargs): """ Neyman's test for conditional independence[1]. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> neyman(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> neyman(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> neyman(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="neyman", **kwargs )
[docs] def cressie_read(X, Y, Z, data, boolean=True, **kwargs): """ Cressie Read statistic for conditional independence[1]. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] Cressie, Noel, and Timothy RC Read. "Multinomial goodness‐of‐fit tests." Journal of the Royal Statistical Society: Series B (Methodological) 46.3 (1984): 440-464. Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> cressie_read(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> cressie_read(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> cressie_read(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="cressie-read", **kwargs )
[docs] def power_divergence(X, Y, Z, data, boolean=True, lambda_="cressie-read", **kwargs): """ Computes the Cressie-Read power divergence statistic [1]. The null hypothesis for the test is X is independent of Y given Z. A lot of the frequency comparision based statistics (eg. chi-square, G-test etc) belong to power divergence family, and are special cases of this test. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list, array-like A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. lambda_: float or string The lambda parameter for the power_divergence statistic. Some values of lambda_ results in other well known tests: "pearson" 1 "Chi-squared test" "log-likelihood" 0 "G-test or log-likelihood" "freeman-tuckey" -1/2 "Freeman-Tuckey Statistic" "mod-log-likelihood" -1 "Modified Log-likelihood" "neyman" -2 "Neyman's statistic" "cressie-read" 2/3 "The value recommended in the paper[1]" boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- CI Test Results: tuple or bool If boolean = False, Returns a tuple (chi, p_value, dof). `chi` is the chi-squared test statistic. The `p_value` for the test, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs is True. If boolean = True, returns True if the p_value of the test is greater than `significance_level` else returns False. References ---------- [1] Cressie, Noel, and Timothy RC Read. "Multinomial goodness‐of‐fit tests." Journal of the Royal Statistical Society: Series B (Methodological) 46.3 (1984): 440-464. Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> chi_square(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> chi_square(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> chi_square(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ # Step 1: Check if the arguments are valid and type conversions. if hasattr(Z, "__iter__"): Z = list(Z) else: raise (f"Z must be an iterable. Got object type: {type(Z)}") if (X in Z) or (Y in Z): raise ValueError( f"The variables X or Y can't be in Z. Found {X if X in Z else Y} in Z." ) # Step 2: Do a simple contingency test if there are no conditional variables. if len(Z) == 0: chi, p_value, dof, expected = stats.chi2_contingency( data.groupby([X, Y]).size().unstack(Y, fill_value=0), lambda_=lambda_ ) # Step 3: If there are conditionals variables, iterate over unique states and do # the contingency test. else: chi = 0 dof = 0 for z_state, df in data.groupby(Z): try: c, _, d, _ = stats.chi2_contingency( df.groupby([X, Y]).size().unstack(Y, fill_value=0), lambda_=lambda_ ) chi += c dof += d except ValueError: # If one of the values is 0 in the 2x2 table. if isinstance(z_state, str): logger.info( f"Skipping the test {X} \u27C2 {Y} | {Z[0]}={z_state}. Not enough samples" ) else: z_str = ", ".join( [f"{var}={state}" for var, state in zip(Z, z_state)] ) logger.info( f"Skipping the test {X} \u27C2 {Y} | {z_str}. Not enough samples" ) p_value = 1 - stats.chi2.cdf(chi, df=dof) # Step 4: Return the values if boolean: return p_value >= kwargs["significance_level"] else: return chi, p_value, dof
[docs] def pearsonr(X, Y, Z, data, boolean=True, **kwargs): """ Computes Pearson correlation coefficient and p-value for testing non-correlation. Should be used only on continuous data. In case when :math:`Z != \null` uses linear regression and computes pearson coefficient on residuals. Parameters ---------- X: str The first variable for testing the independence condition X \u27C2 Y | Z Y: str The second variable for testing the independence condition X \u27C2 Y | Z Z: list/array-like A list of conditional variable for testing the condition X \u27C2 Y | Z data: pandas.DataFrame The dataset in which to test the indepenedence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the pearson correlation coefficient and p_value of the test. Returns ------- CI Test results: tuple or bool If boolean=True, returns True if p-value >= significance_level, else False. If boolean=False, returns a tuple of (Pearson's correlation Coefficient, p-value) References ---------- [1] https://en.wikipedia.org/wiki/Pearson_correlation_coefficient [2] https://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression """ # Step 1: Test if the inputs are correct if not hasattr(Z, "__iter__"): raise ValueError(f"Variable Z. Expected type: iterable. Got type: {type(Z)}") else: Z = list(Z) if not isinstance(data, pd.DataFrame): raise ValueError( f"Variable data. Expected type: pandas.DataFrame. Got type: {type(data)}" ) # Step 2: If Z is empty compute a non-conditional test. if len(Z) == 0: coef, p_value = stats.pearsonr(data.loc[:, X], data.loc[:, Y]) # Step 3: If Z is non-empty, use linear regression to compute residuals and test independence on it. else: X_coef = np.linalg.lstsq(data.loc[:, Z], data.loc[:, X], rcond=None)[0] Y_coef = np.linalg.lstsq(data.loc[:, Z], data.loc[:, Y], rcond=None)[0] residual_X = data.loc[:, X] - data.loc[:, Z].dot(X_coef) residual_Y = data.loc[:, Y] - data.loc[:, Z].dot(Y_coef) coef, p_value = stats.pearsonr(residual_X, residual_Y) if boolean: if p_value >= kwargs["significance_level"]: return True else: return False else: return coef, p_value
def _get_predictions(X, Y, Z, data, **kwargs): """ Function to get predictions using XGBoost for `ci_pillai`. """ # Step 1: Check if any of the conditional variables are categorical if any(data.loc[:, Z].dtypes == "category"): enable_categorical = True else: enable_categorical = False # Step 2: Check variable type of X, choose estimator, and compute predictions. if data.loc[:, X].dtype == "category": clf_x = XGBClassifier( enable_categorical=enable_categorical, seed=kwargs.get("seed"), random_state=kwargs.get("seed"), ) x, x_cat_index = pd.factorize(data.loc[:, X]) clf_x.fit(data.loc[:, Z], x) pred_x = clf_x.predict_proba(data.loc[:, Z]) else: clf_x = XGBRegressor( enable_categorical=enable_categorical, seed=kwargs.get("seed"), random_state=kwargs.get("seed"), ) x = data.loc[:, X] x_cat_index = None clf_x.fit(data.loc[:, Z], x) pred_x = clf_x.predict(data.loc[:, Z]) # Step 3: Check variable type of Y, choose estimator, and compute predictions. if data.loc[:, Y].dtype == "category": clf_y = XGBClassifier( enable_categorical=enable_categorical, seed=kwargs.get("seed"), random_state=kwargs.get("seed"), ) y, y_cat_index = pd.factorize(data.loc[:, Y]) clf_y.fit(data.loc[:, Z], y) pred_y = clf_y.predict_proba(data.loc[:, Z]) else: clf_y = XGBRegressor( enable_categorical=enable_categorical, seed=kwargs.get("seed"), random_state=kwargs.get("seed"), ) y = data.loc[:, Y] y_cat_index = None clf_y.fit(data.loc[:, Z], y) pred_y = clf_y.predict(data.loc[:, Z]) # Step 4: Return the predictions. return (pred_x, pred_y, x_cat_index, y_cat_index)
[docs] def ci_pillai(X, Y, Z, data, boolean=True, **kwargs): """ A mixed-data residualization based conditional independence test[1]. Uses XGBoost estimator to compute LS residuals[2], and then does an association test (Pillai's Trace) on the residuals. Parameters ---------- X: str The first variable for testing the independence condition X \u27C2 Y | Z Y: str The second variable for testing the independence condition X \u27C2 Y | Z Z: list/array-like A list of conditional variable for testing the condition X \u27C2 Y | Z data: pandas.DataFrame The dataset in which to test the indepenedence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the pearson correlation coefficient and p_value of the test. Returns ------- CI Test results: tuple or bool If boolean=True, returns True if p-value >= significance_level, else False. If boolean=False, returns a tuple of (Pearson's correlation Coefficient, p-value) References ---------- [1] Ankan, Ankur, and Johannes Textor. "A simple unified approach to testing high-dimensional conditional independences for categorical and ordinal data." Proceedings of the AAAI Conference on Artificial Intelligence. [2] Li, C.; and Shepherd, B. E. 2010. Test of Association Between Two Ordinal Variables While Adjusting for Covariates. Journal of the American Statistical Association. [3] Muller, K. E. and Peterson B. L. (1984) Practical Methods for computing power in testing the multivariate general linear hypothesis. Computational Statistics & Data Analysis. """ # Step 1: Test if the inputs are correct if not hasattr(Z, "__iter__"): raise ValueError(f"Variable Z. Expected type: iterable. Got type: {type(Z)}") else: Z = list(Z) if not isinstance(data, pd.DataFrame): raise ValueError( f"Variable data. Expected type: pandas.DataFrame. Got type: {type(data)}" ) # Step 1.1: If no conditional variables are specified, use a constant value. if len(Z) == 0: Z = ["cont_Z"] data.loc[:, "cont_Z"] = np.ones(data.shape[0]) # Step 2: Get the predictions pred_x, pred_y, x_cat_index, y_cat_index = _get_predictions(X, Y, Z, data, **kwargs) # Step 3: Compute the residuals if data.loc[:, X].dtype == "category": x = pd.get_dummies(data.loc[:, X]).loc[ :, x_cat_index.categories[x_cat_index.codes] ] # Drop last column to avoid multicollinearity res_x = (x - pred_x).iloc[:, :-1] else: res_x = data.loc[:, X] - pred_x if data.loc[:, Y].dtype == "category": y = pd.get_dummies(data.loc[:, Y]).loc[ :, y_cat_index.categories[y_cat_index.codes] ] # Drop last column to avoid multicollinearity res_y = (y - pred_y).iloc[:, :-1] else: res_y = data.loc[:, Y] - pred_y # Step 4: Compute Pillai's trace. if isinstance(res_x, pd.Series): res_x = res_x.to_frame() if isinstance(res_y, pd.Series): res_y = res_y.to_frame() cca = CCA(scale=False, n_components=min(res_x.shape[1], res_y.shape[1])) res_x_c, res_y_c = cca.fit_transform(res_x, res_y) cancor = [] for i in range(min(res_x.shape[1], res_y.shape[1])): cancor.append(np.corrcoef(res_x_c[:, [i]].T, res_y_c[:, [i]].T)[0, 1]) coef = (np.array(cancor) ** 2).sum() # Step 5: Compute p-value using f-approximation [3]. s = min(res_x.shape[1], res_y.shape[1]) df1 = res_x.shape[1] * res_y.shape[1] df2 = s * (data.shape[0] - 1 + s - res_x.shape[1] - res_y.shape[1]) f_stat = (coef / df1) * (df2 / (s - coef)) p_value = 1 - stats.f.cdf(f_stat, df1, df2) # Step 6: Return if boolean: if p_value >= kwargs["significance_level"]: return True else: return False else: return coef, p_value