Source code for pgmpy.models.BayesianNetwork

#!/usr/bin/env python3

import itertools
from collections import defaultdict
from functools import reduce
from operator import mul

import networkx as nx
import numpy as np
import pandas as pd
from joblib import Parallel, delayed
from tqdm.auto import tqdm

from pgmpy.base import DAG
from pgmpy.factors.continuous import ContinuousFactor
from pgmpy.factors.discrete import (
    DiscreteFactor,
    JointProbabilityDistribution,
    TabularCPD,
)
from pgmpy.global_vars import logger
from pgmpy.models.MarkovNetwork import MarkovNetwork
from pgmpy.utils import compat_fns


[docs]class BayesianNetwork(DAG): """ Initializes a Bayesian Network. A models stores nodes and edges with conditional probability distribution (cpd) and other attributes. models hold directed edges. Self loops are not allowed neither multiple (parallel) edges. Nodes can be any hashable python object. Edges are represented as links between nodes. Parameters ---------- ebunch: input graph Data to initialize graph. If ebunch=None (default) an empty graph is created. The ebunch can be an edge list, or any NetworkX graph object. latents: list, array-like List of variables which are latent (i.e. unobserved) in the model. Examples -------- Create an empty Bayesian Network with no nodes and no edges. >>> from pgmpy.models import BayesianNetwork >>> G = BayesianNetwork() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node('a') Add the nodes from any container (a list, set or tuple or the nodes from another graph). >>> G.add_nodes_from(['a', 'b']) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge('a', 'b') a list of edges, >>> G.add_edges_from([('a', 'b'), ('b', 'c')]) If some edges connect nodes not yet in the model, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Shortcuts:** Many common graph features allow python syntax for speed reporting. >>> 'a' in G # check if node in graph True >>> len(G) # number of nodes in graph 3 """ def __init__(self, ebunch=None, latents=set()): super(BayesianNetwork, self).__init__(ebunch=ebunch, latents=latents) self.cpds = [] self.cardinalities = defaultdict(int)
[docs] def add_edge(self, u, v, **kwargs): """ Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph Parameters ---------- u,v : nodes Nodes can be any hashable python object. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> G = BayesianNetwork() >>> G.add_nodes_from(['grade', 'intel']) >>> G.add_edge('grade', 'intel') """ if u == v: raise ValueError("Self loops are not allowed.") if u in self.nodes() and v in self.nodes() and nx.has_path(self, v, u): raise ValueError( "Loops are not allowed. Adding the edge from (%s->%s) forms a loop." % (u, v) ) else: super(BayesianNetwork, self).add_edge(u, v, **kwargs)
[docs] def remove_node(self, node): """ Remove node from the model. Removing a node also removes all the associated edges, removes the CPD of the node and marginalizes the CPDs of its children. Parameters ---------- node : node Node which is to be removed from the model. Returns ------- None Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.models import BayesianNetwork >>> model = BayesianNetwork([('A', 'B'), ('B', 'C'), ... ('A', 'D'), ('D', 'C')]) >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)), ... columns=['A', 'B', 'C', 'D']) >>> model.fit(values) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7f28248e2438>, <TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>] >>> model.remove_node('A') >>> model.get_cpds() [<TabularCPD representing P(B:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2) at 0x7f28248e26a0>] """ affected_nodes = [v for u, v in self.edges() if u == node] for affected_node in affected_nodes: node_cpd = self.get_cpds(node=affected_node) if node_cpd: node_cpd.marginalize([node], inplace=True) if self.get_cpds(node=node): self.remove_cpds(node) self.latents = self.latents - set([node]) super(BayesianNetwork, self).remove_node(node)
[docs] def remove_nodes_from(self, nodes): """ Remove multiple nodes from the model. Removing a node also removes all the associated edges, removes the CPD of the node and marginalizes the CPDs of its children. Parameters ---------- nodes : list, set (iterable) Nodes which are to be removed from the model. Returns ------- None Examples -------- >>> import pandas as pd >>> import numpy as np >>> from pgmpy.models import BayesianNetwork >>> model = BayesianNetwork([('A', 'B'), ('B', 'C'), ... ('A', 'D'), ('D', 'C')]) >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)), ... columns=['A', 'B', 'C', 'D']) >>> model.fit(values) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7f28248e2438>, <TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>, <TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>, <TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>] >>> model.remove_nodes_from(['A', 'B']) >>> model.get_cpds() [<TabularCPD representing P(C:2 | D:2) at 0x7f28248e2a58>, <TabularCPD representing P(D:2) at 0x7f28248e26d8>] """ for node in nodes: self.remove_node(node)
[docs] def add_cpds(self, *cpds): """ Add CPD (Conditional Probability Distribution) to the Bayesian Model. Parameters ---------- cpds : list, set, tuple (array-like) List of CPDs which will be associated with the model Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete.CPD import TabularCPD >>> student = BayesianNetwork([('diff', 'grades'), ('aptitude', 'grades')]) >>> grades_cpd = TabularCPD('grades', 3, [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'aptitude'], evidence_card=[2, 3], ... state_names={'grades': ['gradeA', 'gradeB', 'gradeC'], ... 'diff': ['easy', 'hard'], ... 'aptitude': ['low', 'medium', 'high']}) >>> student.add_cpds(grades_cpd) +---------+-------------------------+------------------------+ |diff: | easy | hard | +---------+------+--------+---------+------+--------+--------+ |aptitude:| low | medium | high | low | medium | high | +---------+------+--------+---------+------+--------+--------+ |gradeA | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +---------+------+--------+---------+------+--------+--------+ |gradeB | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | +---------+------+--------+---------+------+--------+--------+ |gradeC | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | +---------+------+--------+---------+------+--------+--------+ """ for cpd in cpds: if not isinstance(cpd, (TabularCPD, ContinuousFactor)): raise ValueError("Only TabularCPD or ContinuousFactor can be added.") if set(cpd.scope()) - set(cpd.scope()).intersection(set(self.nodes())): raise ValueError("CPD defined on variable not in the model", cpd) for prev_cpd_index in range(len(self.cpds)): if self.cpds[prev_cpd_index].variable == cpd.variable: logger.warning(f"Replacing existing CPD for {cpd.variable}") self.cpds[prev_cpd_index] = cpd break else: self.cpds.append(cpd)
[docs] def get_cpds(self, node=None): """ Returns the cpd of the node. If node is not specified returns all the CPDs that have been added till now to the graph Parameters ---------- node: any hashable python object (optional) The node whose CPD we want. If node not specified returns all the CPDs added to the model. Returns ------- A list of TabularCPDs: list Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianNetwork([('diff', 'grade'), ('intel', 'grade')]) >>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd) >>> student.get_cpds() """ if node is not None: if node not in self.nodes(): raise ValueError("Node not present in the Directed Graph") else: for cpd in self.cpds: if cpd.variable == node: return cpd else: return self.cpds
[docs] def remove_cpds(self, *cpds): """ Removes the cpds that are provided in the argument. Parameters ---------- *cpds: TabularCPD object A CPD object on any subset of the variables of the model which is to be associated with the model. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianNetwork([('diff', 'grade'), ('intel', 'grade')]) >>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd) >>> student.remove_cpds(cpd) """ for cpd in cpds: if isinstance(cpd, (str, int)): cpd = self.get_cpds(cpd) self.cpds.remove(cpd)
[docs] def get_cardinality(self, node=None): """ Returns the cardinality of the node. Throws an error if the CPD for the queried node hasn't been added to the network. Parameters ---------- node: Any hashable python object(optional). The node whose cardinality we want. If node is not specified returns a dictionary with the given variable as keys and their respective cardinality as values. Returns ------- variable cardinalities: dict or int If node is specified returns the cardinality of the node else returns a dictionary with the cardinality of each variable in the network Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> student = BayesianNetwork([('diff', 'grade'), ('intel', 'grade')]) >>> cpd_diff = TabularCPD('diff', 2, [[0.6], [0.4]]); >>> cpd_intel = TabularCPD('intel', 2, [[0.7], [0.3]]); >>> cpd_grade = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7], ... [0.9, 0.1, 0.8, 0.3]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd_diff,cpd_intel,cpd_grade) >>> student.get_cardinality() defaultdict(<class 'int'>, {'diff': 2, 'intel': 2, 'grade': 2}) >>> student.get_cardinality('intel') 2 """ if node is not None: return self.get_cpds(node).cardinality[0] else: cardinalities = defaultdict(int) for cpd in self.cpds: cardinalities[cpd.variable] = cpd.cardinality[0] return cardinalities
@property def states(self): """ Returns a dictionary mapping each node to its list of possible states. Returns ------- state_dict: dict Dictionary of nodes to possible states """ state_names_list = [cpd.state_names for cpd in self.cpds] state_dict = { node: states for d in state_names_list for node, states in d.items() } return state_dict
[docs] def check_model(self): """ Check the model for various errors. This method checks for the following errors. * Checks if the sum of the probabilities for each state is equal to 1 (tol=0.01). * Checks if the CPDs associated with nodes are consistent with their parents. Returns ------- check: boolean True if all the checks pass otherwise should throw an error. """ for node in self.nodes(): cpd = self.get_cpds(node=node) # Check if a CPD is associated with every node. if cpd is None: raise ValueError(f"No CPD associated with {node}") # Check if the CPD is an instance of either TabularCPD or ContinuousFactor. elif isinstance(cpd, (TabularCPD, ContinuousFactor)): evidence = cpd.get_evidence() parents = self.get_parents(node) # Check if the evidence set of the CPD is same as its parents. if set(evidence) != set(parents): raise ValueError( f"CPD associated with {node} doesn't have proper parents associated with it." ) if len(set(cpd.variables) - set(cpd.state_names.keys())) > 0: raise ValueError( f"CPD for {node} doesn't have state names defined for all the variables." ) # Check if the values of the CPD sum to 1. if not cpd.is_valid_cpd(): raise ValueError( f"Sum or integral of conditional probabilities for node {node} is not equal to 1." ) for node in self.nodes(): cpd = self.get_cpds(node=node) for index, node in enumerate(cpd.variables[1:]): parent_cpd = self.get_cpds(node) # Check if the evidence cardinality specified is same as parent's cardinality if parent_cpd.cardinality[0] != cpd.cardinality[1 + index]: raise ValueError( f"The cardinality of {node} doesn't match in it's child nodes." ) # Check if the state_names are the same in parent and child CPDs. if parent_cpd.state_names[node] != cpd.state_names[node]: raise ValueError( f"The state names of {node} doesn't match in it's child nodes." ) return True
[docs] def to_markov_model(self): """ Converts Bayesian Network to Markov Model. The Markov Model created would be the moral graph of the Bayesian Network. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> G = BayesianNetwork([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> mm = G.to_markov_model() >>> mm.nodes() NodeView(('diff', 'grade', 'intel', 'letter', 'SAT')) >>> mm.edges() EdgeView([('diff', 'grade'), ('diff', 'intel'), ('grade', 'letter'), ('grade', 'intel'), ('intel', 'SAT')]) """ moral_graph = self.moralize() mm = MarkovNetwork(moral_graph.edges()) mm.add_nodes_from(moral_graph.nodes()) mm.add_factors(*[cpd.to_factor() for cpd in self.cpds]) return mm
[docs] def to_junction_tree(self): """ Creates a junction tree (or clique tree) for a given Bayesian Network. For converting a Bayesian Model into a Clique tree, first it is converted into a Markov one. For a given markov model (H) a junction tree (G) is a graph 1. where each node in G corresponds to a maximal clique in H 2. each sepset in G separates the variables strictly on one side of the edge to other. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> G = BayesianNetwork([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> sat_cpd = TabularCPD('SAT', 2, ... [[0.1, 0.2, 0.7], ... [0.9, 0.8, 0.3]], ... evidence=['intel'], evidence_card=[3]) >>> letter_cpd = TabularCPD('letter', 2, ... [[0.1, 0.4, 0.8], ... [0.9, 0.6, 0.2]], ... evidence=['grade'], evidence_card=[3]) >>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd, sat_cpd, letter_cpd) >>> jt = G.to_junction_tree() """ mm = self.to_markov_model() return mm.to_junction_tree()
[docs] def fit( self, data, estimator=None, state_names=[], n_jobs=1, **kwargs, ): """ Estimates the CPD for each variable based on a given data set. Parameters ---------- data: pandas DataFrame object DataFrame object with column names identical to the variable names of the network. (If some values in the data are missing the data cells should be set to `numpy.NaN`. Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.) estimator: Estimator class One of: - MaximumLikelihoodEstimator (default) - BayesianEstimator: In this case, pass 'prior_type' and either 'pseudo_counts' or 'equivalent_sample_size' as additional keyword arguments. See `BayesianEstimator.get_parameters()` for usage. - ExpectationMaximization state_names: dict (optional) A dict indicating, for each variable, the discrete set of states that the variable can take. If unspecified, the observed values in the data set are taken to be the only possible states. n_jobs: int (default: 1) Number of threads/processes to use for estimation. Using n_jobs > 1 for small models or datasets might be slower. Returns ------- Fitted Model: None Modifies the network inplace and adds the `cpds` property. Examples -------- >>> import pandas as pd >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.estimators import MaximumLikelihoodEstimator >>> data = pd.DataFrame(data={'A': [0, 0, 1], 'B': [0, 1, 0], 'C': [1, 1, 0]}) >>> model = BayesianNetwork([('A', 'C'), ('B', 'C')]) >>> model.fit(data) >>> model.get_cpds() [<TabularCPD representing P(A:2) at 0x7fb98a7d50f0>, <TabularCPD representing P(B:2) at 0x7fb98a7d5588>, <TabularCPD representing P(C:2 | A:2, B:2) at 0x7fb98a7b1f98>] """ from pgmpy.estimators import BaseEstimator, MaximumLikelihoodEstimator if estimator is None: estimator = MaximumLikelihoodEstimator else: if not issubclass(estimator, BaseEstimator): raise TypeError("Estimator object should be a valid pgmpy estimator.") _estimator = estimator( self, data, state_names=state_names, ) cpds_list = _estimator.get_parameters(n_jobs=n_jobs, **kwargs) self.add_cpds(*cpds_list)
[docs] def fit_update(self, data, n_prev_samples=None, n_jobs=1): """ Method to update the parameters of the BayesianNetwork with more data. Internally, uses BayesianEstimator with dirichlet prior, and uses the current CPDs (along with `n_prev_samples`) to compute the pseudo_counts. Parameters ---------- data: pandas.DataFrame The new dataset which to use for updating the model. n_prev_samples: int The number of samples/datapoints on which the model was trained before. This parameter determines how much weight should the new data be given. If None, n_prev_samples = nrow(data). n_jobs: int (default: 1) Number of threads/processes to use for estimation. Using n_jobs > 1 for small models or datasets might be slower. Returns ------- Updated model: None Modifies the network inplace. Examples -------- >>> from pgmpy.utils import get_example_model >>> from pgmpy.sampling import BayesianModelSampling >>> model = get_example_model('alarm') >>> # Generate some new data. >>> data = BayesianModelSampling(model).forward_sample(int(1e3)) >>> model.fit_update(data) """ from pgmpy.estimators import BayesianEstimator if n_prev_samples is None: n_prev_samples = data.shape[0] # Step 1: Compute the pseudo_counts for the dirichlet prior. pseudo_counts = { var: compat_fns.to_numpy(self.get_cpds(var).get_values()) * n_prev_samples for var in data.columns } # Step 2: Get the current order of state names for aligning pseudo counts. state_names = {} for var in data.columns: state_names.update(self.get_cpds(var).state_names) # Step 3: Estimate the new CPDs. _est = BayesianEstimator(self, data, state_names=state_names) cpds = _est.get_parameters( prior_type="dirichlet", pseudo_counts=pseudo_counts, n_jobs=n_jobs ) # Temporarily disable logger to stop giving warning about replacing CPDs. logger.disabled = True self.add_cpds(*cpds) logger.disabled = False
[docs] def predict(self, data, stochastic=False, n_jobs=-1): """ Predicts states of all the missing variables. Parameters ---------- data: pandas DataFrame object A DataFrame object with column names same as the variables in the model. stochastic: boolean If True, does prediction by sampling from the distribution of predicted variable(s). If False, returns the states with the highest probability value (i.e. MAP) for the predicted variable(s). n_jobs: int (default: -1) The number of CPU cores to use. If -1, uses all available cores. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from pgmpy.models import BayesianNetwork >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> train_data = values[:800] >>> predict_data = values[800:] >>> model = BayesianNetwork([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(train_data) >>> predict_data = predict_data.copy() >>> predict_data.drop('E', axis=1, inplace=True) >>> y_pred = model.predict(predict_data) >>> y_pred E 800 0 801 1 802 1 803 1 804 0 ... ... 993 0 994 0 995 1 996 1 997 0 998 0 999 0 """ from pgmpy.inference import VariableElimination if set(data.columns) == set(self.nodes()): raise ValueError("No variable missing in data. Nothing to predict") elif set(data.columns) - set(self.nodes()): raise ValueError("Data has variables which are not in the model") missing_variables = set(self.nodes()) - set(data.columns) model_inference = VariableElimination(self) if stochastic: data_unique_indexes = data.groupby(list(data.columns)).apply( lambda t: t.index.tolist() ) data_unique = data_unique_indexes.index.to_frame() pred_values = Parallel(n_jobs=n_jobs)( delayed(model_inference.query)( variables=missing_variables, evidence=data_point.to_dict(), show_progress=False, ) for index, data_point in tqdm( data_unique.iterrows(), total=data_unique.shape[0] ) ) predictions = pd.DataFrame() for i, row in enumerate(data_unique_indexes): p = pred_values[i].sample(n=len(row)) p.index = row predictions = pd.concat((predictions, p), copy=False) return predictions.reindex(data.index) else: data_unique = data.drop_duplicates() pred_values = [] # Send state_names dict from one of the estimated CPDs to the inference class. pred_values = Parallel(n_jobs=n_jobs)( delayed(model_inference.map_query)( variables=missing_variables, evidence=data_point.to_dict(), show_progress=False, ) for index, data_point in tqdm( data_unique.iterrows(), total=data_unique.shape[0] ) ) df_results = pd.DataFrame(pred_values, index=data_unique.index) data_with_results = pd.concat([data_unique, df_results], axis=1) return data.merge(data_with_results, how="left").loc[ :, list(missing_variables) ]
[docs] def predict_probability(self, data): """ Predicts probabilities of all states of the missing variables. Parameters ---------- data : pandas DataFrame object A DataFrame object with column names same as the variables in the model. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from pgmpy.models import BayesianNetwork >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(100, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> train_data = values[:80] >>> predict_data = values[80:] >>> model = BayesianNetwork([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> predict_data = predict_data.copy() >>> predict_data.drop('B', axis=1, inplace=True) >>> y_prob = model.predict_probability(predict_data) >>> y_prob B_0 B_1 80 0.439178 0.560822 81 0.581970 0.418030 82 0.488275 0.511725 83 0.581970 0.418030 84 0.510794 0.489206 85 0.439178 0.560822 86 0.439178 0.560822 87 0.417124 0.582876 88 0.407978 0.592022 89 0.429905 0.570095 90 0.581970 0.418030 91 0.407978 0.592022 92 0.429905 0.570095 93 0.429905 0.570095 94 0.439178 0.560822 95 0.407978 0.592022 96 0.559904 0.440096 97 0.417124 0.582876 98 0.488275 0.511725 99 0.407978 0.592022 """ from pgmpy.inference import VariableElimination if set(data.columns) == set(self.nodes()): raise ValueError("No variable missing in data. Nothing to predict") elif set(data.columns) - set(self.nodes()): raise ValueError("Data has variables which are not in the model") missing_variables = set(self.nodes()) - set(data.columns) pred_values = defaultdict(list) model_inference = VariableElimination(self) for _, data_point in data.iterrows(): full_distribution = model_inference.query( variables=missing_variables, evidence=data_point.to_dict(), show_progress=False, ) states_dict = {} for var in missing_variables: states_dict[var] = full_distribution.marginalize( missing_variables - {var}, inplace=False ) for k, v in states_dict.items(): for l in range(len(v.values)): state = self.get_cpds(k).state_names[k][l] pred_values[k + "_" + str(state)].append(v.values[l]) return pd.DataFrame(pred_values, index=data.index)
[docs] def get_state_probability(self, states): """ Given a fully specified Bayesian Network, returns the probability of the given set of states. Parameters ---------- state: dict dict of the form {variable: state} Returns ------- float: The probability value Examples -------- >>> from pgmpy.utils import get_example_model >>> model = get_example_model('asia') >>> model.get_state_probability({'either': 'no', 'tub': 'no', 'xray': 'yes', 'bronc': 'no'}) 0.02605122 """ # Step 1: Check that all variables and states are in the model. self.check_model() for var, state in states.items(): if var not in self.nodes(): raise ValueError(f"{var} not in the model.") if state not in self.states[var]: raise ValueError(f"State: {state} not define for {var}") # Step 2: Missing variables in states. missing_vars = list(set(self.nodes()) - set(states.keys())) missing_var_states = {var: self.states[var] for var in missing_vars} # Step 2: Compute the probability final_prob = 0 for state_comb in itertools.product(*missing_var_states.values()): temp_states = { **{var: state_comb[i] for i, var in enumerate(missing_vars)}, **states, } prob = 1 for cpd in self.cpds: index = [] for var in cpd.variables: index.append(cpd.name_to_no[var][temp_states[var]]) prob *= cpd.values[tuple(index)] final_prob += prob return final_prob
[docs] def get_factorized_product(self, latex=False): # TODO: refer to IMap class for explanation why this is not implemented. pass
[docs] def is_imap(self, JPD): """ Checks whether the Bayesian Network is Imap of given JointProbabilityDistribution Parameters ---------- JPD: An instance of JointProbabilityDistribution Class, for which you want to check the Imap Returns ------- is IMAP: True or False True if Bayesian Network is Imap for given Joint Probability Distribution False otherwise Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.factors.discrete import JointProbabilityDistribution >>> G = BayesianNetwork([('diff', 'grade'), ('intel', 'grade')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1,0.1,0.1,0.1,0.1,0.1], ... [0.1,0.1,0.1,0.1,0.1,0.1], ... [0.8,0.8,0.8,0.8,0.8,0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd) >>> val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032, 0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128] >>> JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val) >>> G.is_imap(JPD) True """ if not isinstance(JPD, JointProbabilityDistribution): raise TypeError("JPD must be an instance of JointProbabilityDistribution") factors = [cpd.to_factor() for cpd in self.get_cpds()] factor_prod = reduce(mul, factors) JPD_fact = DiscreteFactor(JPD.variables, JPD.cardinality, JPD.values) if JPD_fact == factor_prod: return True else: return False
[docs] def copy(self): """ Returns a copy of the model. Returns ------- Model's copy: pgmpy.models.BayesianNetwork Copy of the model on which the method was called. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> model = BayesianNetwork([('A', 'B'), ('B', 'C')]) >>> cpd_a = TabularCPD('A', 2, [[0.2], [0.8]]) >>> cpd_b = TabularCPD('B', 2, [[0.3, 0.7], [0.7, 0.3]], ... evidence=['A'], ... evidence_card=[2]) >>> cpd_c = TabularCPD('C', 2, [[0.1, 0.9], [0.9, 0.1]], ... evidence=['B'], ... evidence_card=[2]) >>> model.add_cpds(cpd_a, cpd_b, cpd_c) >>> copy_model = model.copy() >>> copy_model.nodes() NodeView(('A', 'B', 'C')) >>> copy_model.edges() OutEdgeView([('A', 'B'), ('B', 'C')]) >>> len(copy_model.get_cpds()) 3 """ model_copy = BayesianNetwork() model_copy.add_nodes_from(self.nodes()) model_copy.add_edges_from(self.edges()) if self.cpds: model_copy.add_cpds(*[cpd.copy() for cpd in self.cpds]) model_copy.latents = self.latents return model_copy
[docs] def get_markov_blanket(self, node): """ Returns a markov blanket for a random variable. In the case of Bayesian Networks, the markov blanket is the set of node's parents, its children and its children's other parents. Returns ------- Markov Blanket: list List of nodes contained in Markov Blanket of `node` Parameters ---------- node: string, int or any hashable python object. The node whose markov blanket would be returned. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> from pgmpy.factors.discrete import TabularCPD >>> G = BayesianNetwork([('x', 'y'), ('z', 'y'), ('y', 'w'), ('y', 'v'), ('u', 'w'), ... ('s', 'v'), ('w', 't'), ('w', 'm'), ('v', 'n'), ('v', 'q')]) >>> G.get_markov_blanket('y') ['s', 'u', 'w', 'v', 'z', 'x'] """ children = self.get_children(node) parents = self.get_parents(node) blanket_nodes = children + parents for child_node in children: blanket_nodes.extend(self.get_parents(child_node)) blanket_nodes = set(blanket_nodes) blanket_nodes.discard(node) return list(blanket_nodes)
[docs] @staticmethod def get_random(n_nodes=5, edge_prob=0.5, n_states=None, latents=False): """ Returns a randomly generated Bayesian Network on `n_nodes` variables with edge probabiliy of `edge_prob` between variables. Parameters ---------- n_nodes: int The number of nodes in the randomly generated DAG. edge_prob: float The probability of edge between any two nodes in the topologically sorted DAG. n_states: int or list (array-like) (default: None) The number of states of each variable. When None randomly generates the number of states. latents: bool (default: False) If True, also creates latent variables. Returns ------- Random DAG: pgmpy.base.DAG The randomly generated DAG. Examples -------- >>> from pgmpy.models import BayesianNetwork >>> model = BayesianNetwork.get_random(n_nodes=5) >>> model.nodes() NodeView((0, 1, 3, 4, 2)) >>> model.edges() OutEdgeView([(0, 1), (0, 3), (1, 3), (1, 4), (3, 4), (2, 3)]) >>> model.cpds [<TabularCPD representing P(0:0) at 0x7f97e16eabe0>, <TabularCPD representing P(1:1 | 0:0) at 0x7f97e16ea670>, <TabularCPD representing P(3:3 | 0:0, 1:1, 2:2) at 0x7f97e16820d0>, <TabularCPD representing P(4:4 | 1:1, 3:3) at 0x7f97e16eae80>, <TabularCPD representing P(2:2) at 0x7f97e1682c40>] """ if n_states is None: n_states = np.random.randint(low=1, high=5, size=n_nodes) elif isinstance(n_states, int): n_states = np.array([n_states] * n_nodes) else: n_states = np.array(n_states) n_states_dict = {i: n_states[i] for i in range(n_nodes)} dag = DAG.get_random(n_nodes=n_nodes, edge_prob=edge_prob, latents=latents) bn_model = BayesianNetwork(dag.edges(), latents=dag.latents) bn_model.add_nodes_from(dag.nodes()) cpds = [] for node in bn_model.nodes(): parents = list(bn_model.predecessors(node)) cpds.append( TabularCPD.get_random( variable=node, evidence=parents, cardinality=n_states_dict ) ) bn_model.add_cpds(*cpds) return bn_model
[docs] def get_random_cpds(self, n_states=None, inplace=False): """ Given a `model`, generates and adds random `TabularCPD` for each node resulting in a fully parameterized network. Parameters ---------- n_states: int or dict (default: None) The number of states of each variable in the `model`. If None, randomly generates the number of states. inplace: bool (default: False) If inplace=True, adds the generated TabularCPDs to `model` itself, else creates a copy of the model. """ if isinstance(n_states, int): n_states = {var: n_states for var in self.nodes()} elif isinstance(n_states, dict): if set(n_states.keys()) != set(self.nodes()): raise ValueError("Number of states not specified for each variable") elif n_states is None: n_states = { var: np.random.randint(low=1, high=5, size=1)[0] for var in self.nodes() } model = self if inplace else self.copy() cpds = [] for node in model.nodes(): parents = list(model.predecessors(node)) cpds.append( TabularCPD.get_random( variable=node, evidence=parents, cardinality=n_states ) ) model.add_cpds(*cpds) if not inplace: return model
[docs] def do(self, nodes, inplace=False): """ Applies the do operation. The do operation removes all incoming edges to variables in `nodes` and marginalizes their CPDs to only contain the variable itself. Parameters ---------- nodes : list, array-like The names of the nodes to apply the do-operator for. inplace: boolean (default: False) If inplace=True, makes the changes to the current object, otherwise returns a new instance. Returns ------- Modified network: pgmpy.models.BayesianNetwork or None If inplace=True, modifies the object itself else returns an instance of BayesianNetwork modified by the do operation. Examples -------- >>> from pgmpy.utils import get_example_model >>> asia = get_example_model('asia') >>> asia.edges() OutEdgeView([('asia', 'tub'), ('tub', 'either'), ('smoke', 'lung'), ('smoke', 'bronc'), ('lung', 'either'), ('bronc', 'dysp'), ('either', 'xray'), ('either', 'dysp')]) >>> do_bronc = asia.do(['bronc']) OutEdgeView([('asia', 'tub'), ('tub', 'either'), ('smoke', 'lung'), ('lung', 'either'), ('bronc', 'dysp'), ('either', 'xray'), ('either', 'dysp')]) """ if isinstance(nodes, (str, int)): nodes = [nodes] else: nodes = list(nodes) if not set(nodes).issubset(set(self.nodes())): raise ValueError( f"Nodes not found in the model: {set(nodes) - set(self.nodes)}" ) model = self if inplace else self.copy() adj_model = DAG.do(model, nodes, inplace=inplace) if adj_model.cpds: for node in nodes: cpd = adj_model.get_cpds(node=node) cpd.marginalize(cpd.variables[1:], inplace=True) return adj_model
[docs] def simulate( self, n_samples=10, do=None, evidence=None, virtual_evidence=None, virtual_intervention=None, include_latents=False, partial_samples=None, seed=None, show_progress=True, ): """ Simulates data from the given model. Internally uses methods from pgmpy.sampling.BayesianModelSampling to generate the data. Parameters ---------- n_samples: int The number of data samples to simulate from the model. do: dict The interventions to apply to the model. dict should be of the form {variable_name: state} evidence: dict Observed evidence to apply to the model. dict should be of the form {variable_name: state} virtual_evidence: list Probabilistically apply evidence to the model. `virtual_evidence` should be a list of `pgmpy.factors.discrete.TabularCPD` objects specifying the virtual probabilities. virtual_intervention: list Also known as soft intervention. `virtual_intervention` should be a list of `pgmpy.factors.discrete.TabularCPD` objects specifying the virtual/soft intervention probabilities. include_latents: boolean Whether to include the latent variable values in the generated samples. partial_samples: pandas.DataFrame A pandas dataframe specifying samples on some of the variables in the model. If specified, the sampling procedure uses these sample values, instead of generating them. partial_samples.shape[0] must be equal to `n_samples`. seed: int (default: None) If a value is provided, sets the seed for numpy.random. show_progress: bool If True, shows a progress bar when generating samples. Returns ------- A dataframe with the simulated data: pd.DataFrame Examples -------- >>> from pgmpy.utils import get_example_model Simulation without any evidence or intervention: >>> model = get_example_model('alarm') >>> model.simulate(n_samples=10) Simulation with the hard evidence: MINVOLSET = HIGH: >>> model.simulate(n_samples=10, evidence={"MINVOLSET": "HIGH"}) Simulation with hard intervention: CVP = LOW: >>> model.simulate(n_samples=10, do={"CVP": "LOW"}) Simulation with virtual/soft evidence: p(MINVOLSET=LOW) = 0.8, p(MINVOLSET=HIGH) = 0.2, p(MINVOLSET=NORMAL) = 0: >>> virt_evidence = [TabularCPD("MINVOLSET", 3, [[0.8], [0.0], [0.2]], state_names={"MINVOLSET": ["LOW", "NORMAL", "HIGH"]})] >>> model.simulate(n_samples, virtual_evidence=virt_evidence) Simulation with virtual/soft intervention: p(CVP=LOW) = 0.2, p(CVP=NORMAL)=0.5, p(CVP=HIGH)=0.3: >>> virt_intervention = [TabularCPD("CVP", 3, [[0.2], [0.5], [0.3]], state_names={"CVP": ["LOW", "NORMAL", "HIGH"]})] >>> model.simulate(n_samples, virtual_intervention=virt_intervention) """ from pgmpy.sampling import BayesianModelSampling self.check_model() model = self.copy() state_names = self.states evidence = {} if evidence is None else evidence for var, state in evidence.items(): if state not in state_names[var]: raise ValueError(f"Evidence state: {state} for {var} doesn't exist") do = {} if do is None else do for var, state in do.items(): if state not in state_names[var]: raise ValueError(f"Do state: {state} for {var} doesn't exist") virtual_intervention = ( [] if virtual_intervention is None else virtual_intervention ) virtual_evidence = [] if virtual_evidence is None else virtual_evidence if set(do.keys()).intersection(set(evidence.keys())): raise ValueError("Variable can't be in both do and evidence") # Step 1: If do or virtual_intervention is specified, modify the network structure. if (do != {}) or (virtual_intervention != []): virt_nodes = [cpd.variables[0] for cpd in virtual_intervention] model = model.do(list(do.keys()) + virt_nodes) evidence = {**evidence, **do} virtual_evidence = [*virtual_evidence, *virtual_intervention] # Step 2: If virtual_evidence; modify the network structure if virtual_evidence != []: for cpd in virtual_evidence: var = cpd.variables[0] if var not in model.nodes(): raise ValueError( "Evidence provided for variable which is not in the model" ) elif len(cpd.variables) > 1: raise ( "Virtual evidence should be defined on individual variables. Maybe you are looking for soft evidence." ) elif self.get_cardinality(var) != cpd.get_cardinality([var])[var]: raise ValueError( "The number of states/cardinality for the evidence should be same as the number of states/cardinality of the variable in the model" ) for cpd in virtual_evidence: var = cpd.variables[0] new_var = "__" + var model.add_edge(var, new_var) values = compat_fns.get_compute_backend().vstack( (cpd.values, 1 - cpd.values) ) new_cpd = TabularCPD( variable=new_var, variable_card=2, values=values, evidence=[var], evidence_card=[model.get_cardinality(var)], state_names={new_var: [0, 1], var: cpd.state_names[var]}, ) model.add_cpds(new_cpd) evidence[new_var] = 0 # Step 3: If no evidence do a forward sampling if len(evidence) == 0: samples = BayesianModelSampling(model).forward_sample( size=n_samples, include_latents=include_latents, seed=seed, show_progress=show_progress, partial_samples=partial_samples, ) # Step 4: If evidence; do a rejection sampling else: samples = BayesianModelSampling(model).rejection_sample( size=n_samples, evidence=[(k, v) for k, v in evidence.items()], include_latents=include_latents, seed=seed, show_progress=show_progress, partial_samples=partial_samples, ) # Step 5: Postprocess and return if include_latents: return samples else: return samples.loc[:, list(set(self.nodes()) - self.latents)]
[docs] def save(self, filename, filetype="bif"): """ Writes the model to a file. Plese avoid using any special characters or spaces in variable or state names. Parameters ---------- filename: str The path along with the filename where to write the file. filetype: str (default: bif) The format in which to write the model to file. Can be one of the following: bif, uai, xmlbif. Examples -------- >>> from pgmpy.utils import get_example_model >>> alarm = get_example_model('alarm') >>> alarm.save('alarm.bif', filetype='bif') """ supported_formats = {"bif", "uai", "xmlbif"} if filename.split(".")[-1].lower() in supported_formats: filetype = filename.split(".")[-1].lower() if filetype == "bif": from pgmpy.readwrite import BIFWriter writer = BIFWriter(self) writer.write_bif(filename=filename) elif filetype == "uai": from pgmpy.readwrite import UAIWriter writer = UAIWriter(self) writer.write_uai(filename=filename) elif filetype == "xmlbif": from pgmpy.readwrite import XMLBIFWriter writer = XMLBIFWriter(self) writer.write_xmlbif(filename=filename)
[docs] @staticmethod def load(filename, filetype="bif", **kwargs): """ Read the model from a file. Parameters ---------- filename: str The path along with the filename where to read the file. filetype: str (default: bif) The format of the model file. Can be one of the following: bif, uai, xmlbif. kwargs: kwargs Any additional arguments for the reader class or get_model method. Please refer the file format class for details. Examples -------- >>> from pgmpy.utils import get_example_model >>> alarm = get_example_model('alarm') >>> alarm.save('alarm.bif', filetype='bif') >>> alarm_model = BayesianNetwork.load('alarm.bif', filetype='bif') """ supported_formats = {"bif", "uai", "xmlbif"} if filename.split(".")[-1].lower() in supported_formats: filetype = filename.split(".")[-1].lower() if filetype == "bif": from pgmpy.readwrite import BIFReader if "n_jobs" in kwargs: n_jobs = kwargs["n_jobs"] else: n_jobs = -1 if "state_name_type" in kwargs: state_name_type = kwargs["state_name_type"] else: state_name_type = str reader = BIFReader(path=filename, n_jobs=n_jobs) return reader.get_model(state_name_type=state_name_type) elif filetype == "uai": from pgmpy.readwrite import UAIReader reader = UAIReader(path=filename) return reader.get_model() elif filetype == "xmlbif": from pgmpy.readwrite import XMLBIFReader reader = XMLBIFReader(path=filename) return reader.get_model()