NoisyOr Model¶
- class pgmpy.models.NoisyOrModel.NoisyOrModel(variables, cardinality, inhibitor_probability)[source]¶
Base class for Noisy-Or models.
This is an implementation of generalized Noisy-Or models and is not limited to Boolean variables and also any arbitrary function can be used instead of the boolean OR function.
Reference: http://xenon.stanford.edu/~srinivas/research/6-UAI93-Srinivas-Generalization-of-Noisy-Or.pdf
- add_variables(variables, cardinality, inhibitor_probability)[source]¶
Adds variables to the NoisyOrModel.
- Parameters:
variables (list, tuple, dict (array like)) – array containing names of the variables that are to be added.
cardinality (list, tuple, dict (array like)) – array containing integers representing the cardinality of the variables.
inhibitor_probability (list, tuple, dict (array_like)) – array containing the inhibitor probabilities corresponding to each variable.
Examples
>>> from pgmpy.models import NoisyOrModel >>> model = NoisyOrModel(['x1', 'x2', 'x3'], [2, 3, 2], [[0.6, 0.4], ... [0.2, 0.4, 0.7], ... [0.1, 0., 4]]) >>> model.add_variables(['x4'], [3], [0.1, 0.4, 0.2])